Some properties of the family of modular Lie superalgebras
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 1087-1112
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Block, R. E., Wilson, R. L., 10.1016/0021-8693(88)90216-5, J. Algebra 114 (1988), 115-259. (1988) MR0931904DOI10.1016/0021-8693(88)90216-5
- Bouarroudj, S., Grozman, P., Leites, D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009). (2009) Zbl1220.17010MR2529187
- Martin, A. J. Calderón, Delgado, J. M. Sánchez, 10.1142/S0217732312501428, Mod. Phys. Lett. A 27 (2012), 1250142, 18 pages. (2012) MR2966788DOI10.1142/S0217732312501428
- Chen, L. Y., Meng, D. J., Zhang, Y. Z., 10.1007/s10114-005-0670-x, Acta Math. Sin., Engl. Ser. 22 (2006), 1343-1356. (2006) Zbl1127.17020MR2251395DOI10.1007/s10114-005-0670-x
- Draper, C., Elduque, A., González, C. Martín, 10.1142/S0129167X11007392, Int. J. Math. 22 (2011), 1823-1855. (2011) MR2872534DOI10.1142/S0129167X11007392
- Fei, Q. Y., On new simple Lie algebras of Shen Guangyu, Chin. Ann. Math., Ser. B 10 (1989), 448-457. (1989) Zbl0695.17004MR1038379
- Kac, V. G., 10.1070/IM1970v004n02ABEH000912, Math. USSR, Izv. 4 (1970), 391-413. (1970) MR0276286DOI10.1070/IM1970v004n02ABEH000912
- Kac, V. G., A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Math. USSR, Izv. 8 (1975), 801-835 translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian. (1975) MR0369452
- Kac, V. G., 10.1016/0001-8708(77)90017-2, Adv. Math. 26 (1977), 8-96. (1977) Zbl0367.17007MR0486011DOI10.1016/0001-8708(77)90017-2
- Kac, V. G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. (1998), 139 1-55. (1998) Zbl0929.17026MR1652530
- Kochetkov, Y., Leites, D., Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group, Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67. (1992) Zbl0765.17006MR1175822
- Leites, D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110. (2007) Zbl1172.17011MR2397769
- Liu, W. D., Zhang, Y. Z., Wang, X. L., 10.1016/j.jalgebra.2003.10.019, J. Algebra 273 (2004), 176-205. (2004) Zbl1162.17308MR2032456DOI10.1016/j.jalgebra.2003.10.019
- Liu, W. D., Zhang, Y. Z., 10.1080/00927870600862615, Commun. Algebra 34 (2006), 3767-3784. (2006) Zbl1193.17010MR2262384DOI10.1080/00927870600862615
- Petrogradskiĭ, V. M., 10.1016/0021-8693(92)90173-J, J. Algebra 145 (1992), 1-21. (1992) MR1144655DOI10.1016/0021-8693(92)90173-J
- Scheunert, M., 10.1007/BFb0070929, Lecture Notes in Mathematics 716 Springer, Berlin (1979). (1979) Zbl0407.17001MR0537441DOI10.1007/BFb0070929
- Shen, G. Y., An intrinsic property of the Lie algebra , Chin. Ann. Math. 2 (1981), 105-115. (1981) Zbl0498.17009
- Shen, G. Y., New simple Lie algebras of characteristic , Chin. Ann. Math., Ser. B 4 (1983), 329-346. (1983) Zbl0507.17007MR0742032
- Strade, H., The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra, Ann. Math. (2) 138 (1993), 1-59. (1993) Zbl0790.17011MR1230926
- Strade, H., Farnsteiner, R., Modular Lie Algebras and Their Representations, Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988). (1988) Zbl0648.17003MR0929682
- Strade, H., Wilson, R. L., 10.1090/S0273-0979-1991-16033-7, Bull. Am. Math. Soc., New Ser. 24 (1991), 357-362. (1991) Zbl0725.17023MR1071032DOI10.1090/S0273-0979-1991-16033-7
- Wang, Y., Zhang, Y. Z., A new definition of restricted Lie superalgebras, Chinese Kexue Tongbao 44 (1999), 807-813. (1999) MR1733605
- Wang, Y., Zhang, Y. Z., The associative forms of the graded Cartan type Lie superalgebras, Adv. Math., Beijing 29 (2000), 65-70. (2000) Zbl1009.17015MR1769128
- Wang, W. Q., Zhao, L., 10.1112/plms/pdn057, Proc. Lond. Math. Soc. 99 (2009), 145-167. (2009) Zbl1176.17013MR2520353DOI10.1112/plms/pdn057
- Wang, X. L., Liu, W. D., Filtered Lie superalgebras of odd Hamiltonian type , English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720. (2007) MR2417896
- Wilson, R. L., 10.1016/0021-8693(76)90206-4, J. Algebra 40 (1976), 418-465. (1976) Zbl0355.17012MR0412239DOI10.1016/0021-8693(76)90206-4
- Xu, X. N., Zhang, Y. Z., Chen, L. Y., The finite-dimensional modular Lie superalgebra , Algebra Colloq. 17 (2010), 525-540. (2010) Zbl1203.17009MR2660443
- Xu, X. N., Chen, L. Y., Zhang, Y. Z., 10.1016/j.jpaa.2010.07.014, J. Pure Appl. Algebra 215 (2011), 1093-1101. (2011) MR2747241DOI10.1016/j.jpaa.2010.07.014
- Zhang, Y. Z., 10.1007/BF03186962, Chin. Sci. Bull. 42 (1997), 720-724. (1997) Zbl0886.17022MR1460613DOI10.1007/BF03186962
- Zhang, Y. Z., Nan, J. Z., Finite-dimensional Lie superalgebras and of Cartan type, Adv. Math., Beijing 27 (1998), 240-246. (1998) MR1651296
- Zhang, Y. Z., Fu, H. C., 10.1081/AGB-120003981, Commun. Algebra 30 (2002), 2651-2673. (2002) Zbl1021.17017MR1908231DOI10.1081/AGB-120003981
- Zhang, Y. Z., Liu, W. D., Modular Lie superalgebras, Chinese Science Press Beijing (2004). (2004) MR2100474
- Zhang, Y. Z., Zhang, Q. C., 10.1016/j.jalgebra.2009.01.038, J. Algebra 321 (2009), 3601-3619. (2009) Zbl1203.17010MR2517804DOI10.1016/j.jalgebra.2009.01.038