Some properties of the family Γ of modular Lie superalgebras

Xiaoning Xu; Liangyun Chen

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 4, page 1087-1112
  • ISSN: 0011-4642

Abstract

top
In this paper, we continue to investigate some properties of the family Γ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras Γ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.

How to cite

top

Xu, Xiaoning, and Chen, Liangyun. "Some properties of the family $\Gamma $ of modular Lie superalgebras." Czechoslovak Mathematical Journal 63.4 (2013): 1087-1112. <http://eudml.org/doc/260787>.

@article{Xu2013,
abstract = {In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.},
author = {Xu, Xiaoning, Chen, Liangyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {modular Lie superalgebra; restricted Lie superalgebra; filtration; modular Lie superalgebra; restricted Lie superalgebra; filtration},
language = {eng},
number = {4},
pages = {1087-1112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of the family $\Gamma $ of modular Lie superalgebras},
url = {http://eudml.org/doc/260787},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Xu, Xiaoning
AU - Chen, Liangyun
TI - Some properties of the family $\Gamma $ of modular Lie superalgebras
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1087
EP - 1112
AB - In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.
LA - eng
KW - modular Lie superalgebra; restricted Lie superalgebra; filtration; modular Lie superalgebra; restricted Lie superalgebra; filtration
UR - http://eudml.org/doc/260787
ER -

References

top
  1. Block, R. E., Wilson, R. L., 10.1016/0021-8693(88)90216-5, J. Algebra 114 (1988), 115-259. (1988) MR0931904DOI10.1016/0021-8693(88)90216-5
  2. Bouarroudj, S., Grozman, P., Leites, D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009). (2009) Zbl1220.17010MR2529187
  3. Martin, A. J. Calderón, Delgado, J. M. Sánchez, 10.1142/S0217732312501428, Mod. Phys. Lett. A 27 (2012), 1250142, 18 pages. (2012) MR2966788DOI10.1142/S0217732312501428
  4. Chen, L. Y., Meng, D. J., Zhang, Y. Z., 10.1007/s10114-005-0670-x, Acta Math. Sin., Engl. Ser. 22 (2006), 1343-1356. (2006) Zbl1127.17020MR2251395DOI10.1007/s10114-005-0670-x
  5. Draper, C., Elduque, A., González, C. Martín, 10.1142/S0129167X11007392, Int. J. Math. 22 (2011), 1823-1855. (2011) MR2872534DOI10.1142/S0129167X11007392
  6. Fei, Q. Y., On new simple Lie algebras of Shen Guangyu, Chin. Ann. Math., Ser. B 10 (1989), 448-457. (1989) Zbl0695.17004MR1038379
  7. Kac, V. G., 10.1070/IM1970v004n02ABEH000912, Math. USSR, Izv. 4 (1970), 391-413. (1970) MR0276286DOI10.1070/IM1970v004n02ABEH000912
  8. Kac, V. G., A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Math. USSR, Izv. 8 (1975), 801-835 translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian. (1975) MR0369452
  9. Kac, V. G., 10.1016/0001-8708(77)90017-2, Adv. Math. 26 (1977), 8-96. (1977) Zbl0367.17007MR0486011DOI10.1016/0001-8708(77)90017-2
  10. Kac, V. G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. (1998), 139 1-55. (1998) Zbl0929.17026MR1652530
  11. Kochetkov, Y., Leites, D., Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group, Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67. (1992) Zbl0765.17006MR1175822
  12. Leites, D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110. (2007) Zbl1172.17011MR2397769
  13. Liu, W. D., Zhang, Y. Z., Wang, X. L., 10.1016/j.jalgebra.2003.10.019, J. Algebra 273 (2004), 176-205. (2004) Zbl1162.17308MR2032456DOI10.1016/j.jalgebra.2003.10.019
  14. Liu, W. D., Zhang, Y. Z., 10.1080/00927870600862615, Commun. Algebra 34 (2006), 3767-3784. (2006) Zbl1193.17010MR2262384DOI10.1080/00927870600862615
  15. Petrogradskiĭ, V. M., 10.1016/0021-8693(92)90173-J, J. Algebra 145 (1992), 1-21. (1992) MR1144655DOI10.1016/0021-8693(92)90173-J
  16. Scheunert, M., 10.1007/BFb0070929, Lecture Notes in Mathematics 716 Springer, Berlin (1979). (1979) Zbl0407.17001MR0537441DOI10.1007/BFb0070929
  17. Shen, G. Y., An intrinsic property of the Lie algebra K ( m , n ) , Chin. Ann. Math. 2 (1981), 105-115. (1981) Zbl0498.17009
  18. Shen, G. Y., New simple Lie algebras of characteristic p , Chin. Ann. Math., Ser. B 4 (1983), 329-346. (1983) Zbl0507.17007MR0742032
  19. Strade, H., The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra, Ann. Math. (2) 138 (1993), 1-59. (1993) Zbl0790.17011MR1230926
  20. Strade, H., Farnsteiner, R., Modular Lie Algebras and Their Representations, Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988). (1988) Zbl0648.17003MR0929682
  21. Strade, H., Wilson, R. L., 10.1090/S0273-0979-1991-16033-7, Bull. Am. Math. Soc., New Ser. 24 (1991), 357-362. (1991) Zbl0725.17023MR1071032DOI10.1090/S0273-0979-1991-16033-7
  22. Wang, Y., Zhang, Y. Z., A new definition of restricted Lie superalgebras, Chinese Kexue Tongbao 44 (1999), 807-813. (1999) MR1733605
  23. Wang, Y., Zhang, Y. Z., The associative forms of the graded Cartan type Lie superalgebras, Adv. Math., Beijing 29 (2000), 65-70. (2000) Zbl1009.17015MR1769128
  24. Wang, W. Q., Zhao, L., 10.1112/plms/pdn057, Proc. Lond. Math. Soc. 99 (2009), 145-167. (2009) Zbl1176.17013MR2520353DOI10.1112/plms/pdn057
  25. Wang, X. L., Liu, W. D., Filtered Lie superalgebras of odd Hamiltonian type H O , English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720. (2007) MR2417896
  26. Wilson, R. L., 10.1016/0021-8693(76)90206-4, J. Algebra 40 (1976), 418-465. (1976) Zbl0355.17012MR0412239DOI10.1016/0021-8693(76)90206-4
  27. Xu, X. N., Zhang, Y. Z., Chen, L. Y., The finite-dimensional modular Lie superalgebra Γ , Algebra Colloq. 17 (2010), 525-540. (2010) Zbl1203.17009MR2660443
  28. Xu, X. N., Chen, L. Y., Zhang, Y. Z., 10.1016/j.jpaa.2010.07.014, J. Pure Appl. Algebra 215 (2011), 1093-1101. (2011) MR2747241DOI10.1016/j.jpaa.2010.07.014
  29. Zhang, Y. Z., 10.1007/BF03186962, Chin. Sci. Bull. 42 (1997), 720-724. (1997) Zbl0886.17022MR1460613DOI10.1007/BF03186962
  30. Zhang, Y. Z., Nan, J. Z., Finite-dimensional Lie superalgebras W ( m , n , t ) and S ( m , n , t ) of Cartan type, Adv. Math., Beijing 27 (1998), 240-246. (1998) MR1651296
  31. Zhang, Y. Z., Fu, H. C., 10.1081/AGB-120003981, Commun. Algebra 30 (2002), 2651-2673. (2002) Zbl1021.17017MR1908231DOI10.1081/AGB-120003981
  32. Zhang, Y. Z., Liu, W. D., Modular Lie superalgebras, Chinese Science Press Beijing (2004). (2004) MR2100474
  33. Zhang, Y. Z., Zhang, Q. C., 10.1016/j.jalgebra.2009.01.038, J. Algebra 321 (2009), 3601-3619. (2009) Zbl1203.17010MR2517804DOI10.1016/j.jalgebra.2009.01.038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.