Some properties of the family of modular Lie superalgebras
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 1087-1112
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXu, Xiaoning, and Chen, Liangyun. "Some properties of the family $\Gamma $ of modular Lie superalgebras." Czechoslovak Mathematical Journal 63.4 (2013): 1087-1112. <http://eudml.org/doc/260787>.
@article{Xu2013,
abstract = {In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.},
author = {Xu, Xiaoning, Chen, Liangyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {modular Lie superalgebra; restricted Lie superalgebra; filtration; modular Lie superalgebra; restricted Lie superalgebra; filtration},
language = {eng},
number = {4},
pages = {1087-1112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of the family $\Gamma $ of modular Lie superalgebras},
url = {http://eudml.org/doc/260787},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Xu, Xiaoning
AU - Chen, Liangyun
TI - Some properties of the family $\Gamma $ of modular Lie superalgebras
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1087
EP - 1112
AB - In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.
LA - eng
KW - modular Lie superalgebra; restricted Lie superalgebra; filtration; modular Lie superalgebra; restricted Lie superalgebra; filtration
UR - http://eudml.org/doc/260787
ER -
References
top- Block, R. E., Wilson, R. L., 10.1016/0021-8693(88)90216-5, J. Algebra 114 (1988), 115-259. (1988) MR0931904DOI10.1016/0021-8693(88)90216-5
- Bouarroudj, S., Grozman, P., Leites, D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009). (2009) Zbl1220.17010MR2529187
- Martin, A. J. Calderón, Delgado, J. M. Sánchez, 10.1142/S0217732312501428, Mod. Phys. Lett. A 27 (2012), 1250142, 18 pages. (2012) MR2966788DOI10.1142/S0217732312501428
- Chen, L. Y., Meng, D. J., Zhang, Y. Z., 10.1007/s10114-005-0670-x, Acta Math. Sin., Engl. Ser. 22 (2006), 1343-1356. (2006) Zbl1127.17020MR2251395DOI10.1007/s10114-005-0670-x
- Draper, C., Elduque, A., González, C. Martín, 10.1142/S0129167X11007392, Int. J. Math. 22 (2011), 1823-1855. (2011) MR2872534DOI10.1142/S0129167X11007392
- Fei, Q. Y., On new simple Lie algebras of Shen Guangyu, Chin. Ann. Math., Ser. B 10 (1989), 448-457. (1989) Zbl0695.17004MR1038379
- Kac, V. G., 10.1070/IM1970v004n02ABEH000912, Math. USSR, Izv. 4 (1970), 391-413. (1970) MR0276286DOI10.1070/IM1970v004n02ABEH000912
- Kac, V. G., A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Math. USSR, Izv. 8 (1975), 801-835 translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian. (1975) MR0369452
- Kac, V. G., 10.1016/0001-8708(77)90017-2, Adv. Math. 26 (1977), 8-96. (1977) Zbl0367.17007MR0486011DOI10.1016/0001-8708(77)90017-2
- Kac, V. G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. (1998), 139 1-55. (1998) Zbl0929.17026MR1652530
- Kochetkov, Y., Leites, D., Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group, Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67. (1992) Zbl0765.17006MR1175822
- Leites, D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110. (2007) Zbl1172.17011MR2397769
- Liu, W. D., Zhang, Y. Z., Wang, X. L., 10.1016/j.jalgebra.2003.10.019, J. Algebra 273 (2004), 176-205. (2004) Zbl1162.17308MR2032456DOI10.1016/j.jalgebra.2003.10.019
- Liu, W. D., Zhang, Y. Z., 10.1080/00927870600862615, Commun. Algebra 34 (2006), 3767-3784. (2006) Zbl1193.17010MR2262384DOI10.1080/00927870600862615
- Petrogradskiĭ, V. M., 10.1016/0021-8693(92)90173-J, J. Algebra 145 (1992), 1-21. (1992) MR1144655DOI10.1016/0021-8693(92)90173-J
- Scheunert, M., 10.1007/BFb0070929, Lecture Notes in Mathematics 716 Springer, Berlin (1979). (1979) Zbl0407.17001MR0537441DOI10.1007/BFb0070929
- Shen, G. Y., An intrinsic property of the Lie algebra , Chin. Ann. Math. 2 (1981), 105-115. (1981) Zbl0498.17009
- Shen, G. Y., New simple Lie algebras of characteristic , Chin. Ann. Math., Ser. B 4 (1983), 329-346. (1983) Zbl0507.17007MR0742032
- Strade, H., The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra, Ann. Math. (2) 138 (1993), 1-59. (1993) Zbl0790.17011MR1230926
- Strade, H., Farnsteiner, R., Modular Lie Algebras and Their Representations, Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988). (1988) Zbl0648.17003MR0929682
- Strade, H., Wilson, R. L., 10.1090/S0273-0979-1991-16033-7, Bull. Am. Math. Soc., New Ser. 24 (1991), 357-362. (1991) Zbl0725.17023MR1071032DOI10.1090/S0273-0979-1991-16033-7
- Wang, Y., Zhang, Y. Z., A new definition of restricted Lie superalgebras, Chinese Kexue Tongbao 44 (1999), 807-813. (1999) MR1733605
- Wang, Y., Zhang, Y. Z., The associative forms of the graded Cartan type Lie superalgebras, Adv. Math., Beijing 29 (2000), 65-70. (2000) Zbl1009.17015MR1769128
- Wang, W. Q., Zhao, L., 10.1112/plms/pdn057, Proc. Lond. Math. Soc. 99 (2009), 145-167. (2009) Zbl1176.17013MR2520353DOI10.1112/plms/pdn057
- Wang, X. L., Liu, W. D., Filtered Lie superalgebras of odd Hamiltonian type , English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720. (2007) MR2417896
- Wilson, R. L., 10.1016/0021-8693(76)90206-4, J. Algebra 40 (1976), 418-465. (1976) Zbl0355.17012MR0412239DOI10.1016/0021-8693(76)90206-4
- Xu, X. N., Zhang, Y. Z., Chen, L. Y., The finite-dimensional modular Lie superalgebra , Algebra Colloq. 17 (2010), 525-540. (2010) Zbl1203.17009MR2660443
- Xu, X. N., Chen, L. Y., Zhang, Y. Z., 10.1016/j.jpaa.2010.07.014, J. Pure Appl. Algebra 215 (2011), 1093-1101. (2011) MR2747241DOI10.1016/j.jpaa.2010.07.014
- Zhang, Y. Z., 10.1007/BF03186962, Chin. Sci. Bull. 42 (1997), 720-724. (1997) Zbl0886.17022MR1460613DOI10.1007/BF03186962
- Zhang, Y. Z., Nan, J. Z., Finite-dimensional Lie superalgebras and of Cartan type, Adv. Math., Beijing 27 (1998), 240-246. (1998) MR1651296
- Zhang, Y. Z., Fu, H. C., 10.1081/AGB-120003981, Commun. Algebra 30 (2002), 2651-2673. (2002) Zbl1021.17017MR1908231DOI10.1081/AGB-120003981
- Zhang, Y. Z., Liu, W. D., Modular Lie superalgebras, Chinese Science Press Beijing (2004). (2004) MR2100474
- Zhang, Y. Z., Zhang, Q. C., 10.1016/j.jalgebra.2009.01.038, J. Algebra 321 (2009), 3601-3619. (2009) Zbl1203.17010MR2517804DOI10.1016/j.jalgebra.2009.01.038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.