Page 1 Next

Displaying 1 – 20 of 85

Showing per page

Affine braid group actions on derived categories of Springer resolutions

Roman Bezrukavnikov, Simon Riche (2012)

Annales scientifiques de l'École Normale Supérieure

In this paper we construct and study an action of the affine braid group associated with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s construction of the affine Hecke algebra, and is used in particular by the first author and I. Mirković in the course...

Diamonds in thin Lie algebras

M. Avitabile, G. Jurman (2001)

Bollettino dell'Unione Matematica Italiana

In un'algebra di Lie graduata thin, la classe in cui compare il secondo diamante e la caratteristica del campo soggiacente determinano se l'algebra stessa abbia o meno dimensione finita ed in tal caso forniscono anche un limite superiore a tale dimensione.

Directed pseudo-graphs and Lie algebras over finite fields

Luis B. Boza, Eugenio Manuel Fedriani, Juan Núñez, Ana María Pacheco, María Trinidad Villar (2014)

Czechoslovak Mathematical Journal

The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four 2 -, 3 -, 4 -, and 5 -dimensional algebras of the studied family, respectively, over the field / 2 . Over / 3 , eight and twenty-two 2 - and 3 -dimensional Lie algebras, respectively, are also found. Finally,...

Homologie restreinte des p -algèbres de Lie en degré deux

Rachida Aboughazi (1989)

Annales de l'institut Fourier

Soit g une p -algèbre de Lie parfaite au sens des algèbres de Lie (i.e. g / [ g , g ] = 0 ) . Nous déterminons, en degré deux, le groupe d’homologie restreinte de g en fonction de son groupe d’homologie d’algèbre de Lie. Nous appliquons ce résultat à l’algèbre de Lie s l n ( A ) des matrices de trace nulle sur une algèbre commutative, et nous montrons que pour sa structure de p -algèbre de Lie, le groupe d’homologie restreinte de dimension deux ne se stabilise pas, contrairement au groupe d’homologie d’algèbre de Lie étudié par...

Infinitesimal unipotent group schemes of complexity 1

Rolf Farnsteiner, Gerhard Röhrle, Detlef Voigt (2001)

Colloquium Mathematicae

We classify the uniserial infinitesimal unipotent commutative groups of finite representation type over algebraically closed fields. As an application we provide detailed information on the structure of those infinitesimal groups whose distribution algebras have a representation-finite principal block.

Currently displaying 1 – 20 of 85

Page 1 Next