Reflexivity of bilattices
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 995-1000
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKliś-Garlicka, Kamila. "Reflexivity of bilattices." Czechoslovak Mathematical Journal 63.4 (2013): 995-1000. <http://eudml.org/doc/260794>.
@article{Kliś2013,
abstract = {We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice $\mathcal \{L\}$ we may associate a bilattice $\Sigma _\{\mathcal \{L\}\}$. Similarly, having a bilattice $\Sigma $ we may construct a subspace lattice $\mathcal \{L\}_\{\Sigma \}$. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.},
author = {Kliś-Garlicka, Kamila},
journal = {Czechoslovak Mathematical Journal},
keywords = {reflexive algebra; reflexive lattice; subspace lattice; bilattice; reflexive lattice; bilattice; subspace lattice; reflexive algebra},
language = {eng},
number = {4},
pages = {995-1000},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Reflexivity of bilattices},
url = {http://eudml.org/doc/260794},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Kliś-Garlicka, Kamila
TI - Reflexivity of bilattices
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 995
EP - 1000
AB - We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice $\mathcal {L}$ we may associate a bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may construct a subspace lattice $\mathcal {L}_{\Sigma }$. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.
LA - eng
KW - reflexive algebra; reflexive lattice; subspace lattice; bilattice; reflexive lattice; bilattice; subspace lattice; reflexive algebra
UR - http://eudml.org/doc/260794
ER -
References
top- Davidson, K. R., Harrison, K. J., 10.1112/jlms/s2-39.2.309, J. Lond. Math. Soc., II. Ser. 39 (1989), 309-323. (1989) Zbl0723.47003MR0991664DOI10.1112/jlms/s2-39.2.309
- Hadwin, D., 10.1090/S0002-9947-1994-1239639-4, Trans. Am. Math. Soc. 344 (1994), 325-360. (1994) Zbl0802.46010MR1239639DOI10.1090/S0002-9947-1994-1239639-4
- Halmos, P. R., 10.1090/S0002-9947-1969-0251519-5, Trans. Am. Math. Soc. 144 (1969), 381-389. (1969) Zbl0187.05503MR0251519DOI10.1090/S0002-9947-1969-0251519-5
- Loginov, A. I., Shulman, V. S., Hereditary and intermediate reflexivity of -algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 1260-1273 Russian. (1975) MR0405124
- Sarason, D., 10.2140/pjm.1966.17.511, Pac. J. Math. 17 (1966), 511-517. (1966) Zbl0171.33703MR0192365DOI10.2140/pjm.1966.17.511
- Shulman, V. S., Nest algebras by K. R. Davidson: a review, Algebra Anal. 2 (1990), 236-255. (1990)
- Shulman, V. S., Turowska, L., 10.1016/S0022-1236(03)00270-2, J. Funct. Anal. 209 (2004), 293-331. (2004) Zbl1071.47066MR2044225DOI10.1016/S0022-1236(03)00270-2
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.