A characterization of reflexive spaces of operators

Janko Bračič; Lina Oliveira

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 257-266
  • ISSN: 0011-4642

Abstract

top
We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.

How to cite

top

Bračič, Janko, and Oliveira, Lina. "A characterization of reflexive spaces of operators." Czechoslovak Mathematical Journal 68.1 (2018): 257-266. <http://eudml.org/doc/294191>.

@article{Bračič2018,
abstract = {We show that for a linear space of operators $\{\mathcal \{M\}\}\subseteq \{\mathcal \{B\}\}(\mathcal \{H\}_1,\mathcal \{H\}_2)$ the following assertions are equivalent. (i) $\{\mathcal \{M\}\} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice $\{\rm Bil\}(\{\mathcal \{M\}\})$ of subspaces determined by $\{\mathcal \{M\}\}$ with $P\le \psi _1(P,Q)$ and $Q\le \psi _2(P,Q)$ for any pair $(P,Q)\in \{\rm Bil\}(\{\mathcal \{M\}\})$, and such that an operator $T\in \{\mathcal \{B\}\}(\mathcal \{H\}_1,\mathcal \{H\}_2)$ lies in $\{\mathcal \{M\}\}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in \{\rm Bil\}( \{\mathcal \{M\}\})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.},
author = {Bračič, Janko, Oliveira, Lina},
journal = {Czechoslovak Mathematical Journal},
keywords = {reflexive space of operators; order-preserving map},
language = {eng},
number = {1},
pages = {257-266},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A characterization of reflexive spaces of operators},
url = {http://eudml.org/doc/294191},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Bračič, Janko
AU - Oliveira, Lina
TI - A characterization of reflexive spaces of operators
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 257
EP - 266
AB - We show that for a linear space of operators ${\mathcal {M}}\subseteq {\mathcal {B}}(\mathcal {H}_1,\mathcal {H}_2)$ the following assertions are equivalent. (i) ${\mathcal {M}} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal {M}})$ of subspaces determined by ${\mathcal {M}}$ with $P\le \psi _1(P,Q)$ and $Q\le \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal {M}})$, and such that an operator $T\in {\mathcal {B}}(\mathcal {H}_1,\mathcal {H}_2)$ lies in ${\mathcal {M}}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal {M}})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
LA - eng
KW - reflexive space of operators; order-preserving map
UR - http://eudml.org/doc/294191
ER -

References

top
  1. Han, D. G., 10.2307/2047592, Proc. Am. Math. Soc. 104 (1988), 1067-1070. (1988) Zbl0694.47031MR0969048DOI10.2307/2047592
  2. Erdos, J. A., 10.1112/plms/s3-52.3.582, Proc. Lond. Math. Soc., III Ser. 52 (1986), 582-600. (1986) Zbl0609.47053MR0833651DOI10.1112/plms/s3-52.3.582
  3. Erdos, J. A., Power, S. C., Weakly closed ideals of nest algebras, J. Oper. Theory 7 (1982), 219-235. (1982) Zbl0523.47027MR0658610
  4. Hadwin, D., 10.1090/S0002-9947-1994-1239639-4, Trans. Am. Math. Soc. 344 (1994), 325-360. (1994) Zbl0802.46010MR1239639DOI10.1090/S0002-9947-1994-1239639-4
  5. Halmos, P. R., 10.1112/jlms/s2-4.2.257, J. Lond. Math. Soc., II. Ser. 4 (1971), 257-263. (1971) Zbl0231.47003MR0288612DOI10.1112/jlms/s2-4.2.257
  6. Kliś-Garlicka, K., 10.1007/s10587-013-0067-4, Czech. Math. J. 63 (2013), 995-1000. (2013) Zbl1313.47024MR3165510DOI10.1007/s10587-013-0067-4
  7. Kliś-Garlicka, K., 10.1007/s10587-016-0244-3, Czech. Math. J. 66 (2016), 119-125. (2016) Zbl06587878MR3483227DOI10.1007/s10587-016-0244-3
  8. Li, P., Li, F., 10.1007/s00020-012-1982-8, Integral Equations Oper. Theory 74 (2012), 123-136. (2012) Zbl1286.47046MR2969043DOI10.1007/s00020-012-1982-8
  9. Loginov, A. I., Sul'man, V. S., Hereditary and intermediate reflexivity of W * -algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian. (1975) Zbl0327.46073MR0405124
  10. Shulman, V., Turowska, L., 10.1016/S0022-1236(03)00270-2, J. Funct. Anal. 209 (2004), 293-331. (2004) Zbl1071.47066MR2044225DOI10.1016/S0022-1236(03)00270-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.