A characterization of reflexive spaces of operators
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 257-266
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBračič, Janko, and Oliveira, Lina. "A characterization of reflexive spaces of operators." Czechoslovak Mathematical Journal 68.1 (2018): 257-266. <http://eudml.org/doc/294191>.
@article{Bračič2018,
abstract = {We show that for a linear space of operators $\{\mathcal \{M\}\}\subseteq \{\mathcal \{B\}\}(\mathcal \{H\}_1,\mathcal \{H\}_2)$ the following assertions are equivalent. (i) $\{\mathcal \{M\}\} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice $\{\rm Bil\}(\{\mathcal \{M\}\})$ of subspaces determined by $\{\mathcal \{M\}\}$ with $P\le \psi _1(P,Q)$ and $Q\le \psi _2(P,Q)$ for any pair $(P,Q)\in \{\rm Bil\}(\{\mathcal \{M\}\})$, and such that an operator $T\in \{\mathcal \{B\}\}(\mathcal \{H\}_1,\mathcal \{H\}_2)$ lies in $\{\mathcal \{M\}\}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in \{\rm Bil\}( \{\mathcal \{M\}\})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.},
author = {Bračič, Janko, Oliveira, Lina},
journal = {Czechoslovak Mathematical Journal},
keywords = {reflexive space of operators; order-preserving map},
language = {eng},
number = {1},
pages = {257-266},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A characterization of reflexive spaces of operators},
url = {http://eudml.org/doc/294191},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Bračič, Janko
AU - Oliveira, Lina
TI - A characterization of reflexive spaces of operators
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 257
EP - 266
AB - We show that for a linear space of operators ${\mathcal {M}}\subseteq {\mathcal {B}}(\mathcal {H}_1,\mathcal {H}_2)$ the following assertions are equivalent. (i) ${\mathcal {M}} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal {M}})$ of subspaces determined by ${\mathcal {M}}$ with $P\le \psi _1(P,Q)$ and $Q\le \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal {M}})$, and such that an operator $T\in {\mathcal {B}}(\mathcal {H}_1,\mathcal {H}_2)$ lies in ${\mathcal {M}}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal {M}})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
LA - eng
KW - reflexive space of operators; order-preserving map
UR - http://eudml.org/doc/294191
ER -
References
top- Han, D. G., 10.2307/2047592, Proc. Am. Math. Soc. 104 (1988), 1067-1070. (1988) Zbl0694.47031MR0969048DOI10.2307/2047592
- Erdos, J. A., 10.1112/plms/s3-52.3.582, Proc. Lond. Math. Soc., III Ser. 52 (1986), 582-600. (1986) Zbl0609.47053MR0833651DOI10.1112/plms/s3-52.3.582
- Erdos, J. A., Power, S. C., Weakly closed ideals of nest algebras, J. Oper. Theory 7 (1982), 219-235. (1982) Zbl0523.47027MR0658610
- Hadwin, D., 10.1090/S0002-9947-1994-1239639-4, Trans. Am. Math. Soc. 344 (1994), 325-360. (1994) Zbl0802.46010MR1239639DOI10.1090/S0002-9947-1994-1239639-4
- Halmos, P. R., 10.1112/jlms/s2-4.2.257, J. Lond. Math. Soc., II. Ser. 4 (1971), 257-263. (1971) Zbl0231.47003MR0288612DOI10.1112/jlms/s2-4.2.257
- Kliś-Garlicka, K., 10.1007/s10587-013-0067-4, Czech. Math. J. 63 (2013), 995-1000. (2013) Zbl1313.47024MR3165510DOI10.1007/s10587-013-0067-4
- Kliś-Garlicka, K., 10.1007/s10587-016-0244-3, Czech. Math. J. 66 (2016), 119-125. (2016) Zbl06587878MR3483227DOI10.1007/s10587-016-0244-3
- Li, P., Li, F., 10.1007/s00020-012-1982-8, Integral Equations Oper. Theory 74 (2012), 123-136. (2012) Zbl1286.47046MR2969043DOI10.1007/s00020-012-1982-8
- Loginov, A. I., Sul'man, V. S., Hereditary and intermediate reflexivity of -algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian. (1975) Zbl0327.46073MR0405124
- Shulman, V., Turowska, L., 10.1016/S0022-1236(03)00270-2, J. Funct. Anal. 209 (2004), 293-331. (2004) Zbl1071.47066MR2044225DOI10.1016/S0022-1236(03)00270-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.