On generalized -harmonic morphisms
A. Mohammed Cherif; Djaa Mustapha
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 17-27
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCherif, A. Mohammed, and Mustapha, Djaa. "On generalized $f$-harmonic morphisms." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 17-27. <http://eudml.org/doc/260801>.
@article{Cherif2014,
abstract = {In this paper, we study the
characterization of generalized
$f$-harmonic morphisms between Riemannian
manifolds. We prove that a map between
Riemannian manifolds is an
$f$-harmonic morphism if and only if it
is a horizontally weakly conformal map
satisfying some further conditions.
We present new properties generalizing
Fuglede-Ishihara characterization for
harmonic morphisms ([Fuglede B.,
Harmonic morphisms between Riemannian
manifolds, Ann. Inst. Fourier (Grenoble)
28 (1978), 107–144], [Ishihara T.,
A mapping of Riemannian manifolds which
preserves harmonic functions,
J. Math. Kyoto Univ. 19 (1979),
no. 2, 215–229]).},
author = {Cherif, A. Mohammed, Mustapha, Djaa},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$f$-harmonic morphisms; $f$-harmonic maps; horizontally weakly conformal map; -harmonic morphism; -harmonic map; horizontally weakly conformal map},
language = {eng},
number = {1},
pages = {17-27},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On generalized $f$-harmonic morphisms},
url = {http://eudml.org/doc/260801},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Cherif, A. Mohammed
AU - Mustapha, Djaa
TI - On generalized $f$-harmonic morphisms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 17
EP - 27
AB - In this paper, we study the
characterization of generalized
$f$-harmonic morphisms between Riemannian
manifolds. We prove that a map between
Riemannian manifolds is an
$f$-harmonic morphism if and only if it
is a horizontally weakly conformal map
satisfying some further conditions.
We present new properties generalizing
Fuglede-Ishihara characterization for
harmonic morphisms ([Fuglede B.,
Harmonic morphisms between Riemannian
manifolds, Ann. Inst. Fourier (Grenoble)
28 (1978), 107–144], [Ishihara T.,
A mapping of Riemannian manifolds which
preserves harmonic functions,
J. Math. Kyoto Univ. 19 (1979),
no. 2, 215–229]).
LA - eng
KW - $f$-harmonic morphisms; $f$-harmonic maps; horizontally weakly conformal map; -harmonic morphism; -harmonic map; horizontally weakly conformal map
UR - http://eudml.org/doc/260801
ER -
References
top- Ara M., 10.2996/kmj/1138044045, Kodai Math. J. 22 (1999), no. 2, 243–263. Zbl0941.58010MR1700595DOI10.2996/kmj/1138044045
- Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Clarendon Press, Oxford, 2003. MR2044031
- Course N., f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423–435 (electronic). Zbl1202.58012MR2357720
- Djaa M., Cherif A.M., Zegga K., Ouakkas S., On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5 (2012), no. 1, 90–100. MR2915490
- Mustapha D., Cherif A.M., On the generalized -biharmonic maps and stress -bienergy tensor, Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81. MR3113559
- Fuglede B., 10.5802/aif.691, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144. Zbl0408.31011MR0499588DOI10.5802/aif.691
- Gudmundsson S., The geometry of harmonic morphisms, University of Leeds, Department of Pure Mathematics, April 1992. Zbl0715.53029
- Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. Zbl0421.31006MR0545705
- Lichnerowicz A., Applications harmoniques et variétés Kähleriennes, 1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London. Zbl0193.50101MR0262993
- Ou Y.L., On -harmonic morphisms between Riemannian manifolds, arxiv:1103.5687, Chinese Ann. Math., series B(to appear).
- Ouakkas S., Nasri R., Djaa M., On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol. 10 (2010), no. 1, 11–27. Zbl1209.58014MR2677559
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.