Nonlinear Rescaling Method and Self-concordant Functions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 2, page 5-19
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topAndrášik, Richard. "Nonlinear Rescaling Method and Self-concordant Functions." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.2 (2013): 5-19. <http://eudml.org/doc/260802>.
@article{Andrášik2013,
abstract = {Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is recommended as a suitable nonlinear rescaling function.},
author = {Andrášik, Richard},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {convex optimization; nonlinear rescaling method; self-concordant functions; convex optimization; nonlinear rescaling method; self-concordant functions},
language = {eng},
number = {2},
pages = {5-19},
publisher = {Palacký University Olomouc},
title = {Nonlinear Rescaling Method and Self-concordant Functions},
url = {http://eudml.org/doc/260802},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Andrášik, Richard
TI - Nonlinear Rescaling Method and Self-concordant Functions
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 2
SP - 5
EP - 19
AB - Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is recommended as a suitable nonlinear rescaling function.
LA - eng
KW - convex optimization; nonlinear rescaling method; self-concordant functions; convex optimization; nonlinear rescaling method; self-concordant functions
UR - http://eudml.org/doc/260802
ER -
References
top- Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University Press, Cambridge, 2004. (2004) Zbl1058.90049MR2061575
- Griva, I., Nash, S. G., Sofer, A., Linear and Nonlinear Optimization, Second edition, SIAM, Philadelphia, 2009. (2009) Zbl1159.90002MR2472514
- Kučera, R., Machalová, J., Netuka, H., Ženčák, P., An interior-point algorithm for the minimization arising from 3D contact problems with friction, Optimization Methods and Software, (2013), in press. (2013) Zbl1278.65090MR3175463
- Nocedal, J., Wright, S. J., Numerical Optimization, Second edition, Springer, New York, 2006. (2006) Zbl1104.65059MR2244940
- Polyak, R., 10.1007/BF01586050, Mathematical Programming 54 (1992), 177–222. (1992) Zbl0756.90085MR1158819DOI10.1007/BF01586050
- Polyak, R., 10.1023/A:1010938423538, Annals of Operations Research 101 (2001), 427–460. (2001) Zbl0996.90088MR1852524DOI10.1023/A:1010938423538
- Polyak, R., Nonlinear rescaling vs. Smoothing Technique in Convex Optimization, Mathematical Programming 92A (2002), 197–235. (2002) Zbl1022.90014MR1901258
- Polyak, R., 10.1007/s10589-006-9759-0, Computational Optimization and Applications 35 (2006), 347–373. (2006) Zbl1128.90047MR2279496DOI10.1007/s10589-006-9759-0
- Polyak, R., Griva I., 10.1023/B:JOTA.0000041733.24606.99, JOTA 122, 1 (2004), 111–156. (2004) Zbl1129.90339MR2092474DOI10.1023/B:JOTA.0000041733.24606.99
- Polyak, R., Griva, I., Primal-Dual Nonlinear Rescaling Method with Dynamic Scaling Parameter Update, Mathematical Programming 106A (2006), 237–259. (2006) Zbl1134.90494MR2208083
- Polyak, R., Griva, I., 10.1007/s10898-006-9117-x, Journal of Global Optimization 40, 4 (2008), 679–695. (2008) Zbl1149.90146MR2377487DOI10.1007/s10898-006-9117-x
- Polyak, R., Griva, I., 10.3934/naco.2011.1.283, Numerical Algebra, Control and Optimization 1, 2 (2011), 283–299. (2011) Zbl1268.90046MR2805932DOI10.3934/naco.2011.1.283
- Polyak, R., Teboulle, M., 10.1007/BF02614440, Mathematical programming 76 (1997), 265–284. (1997) Zbl0882.90106MR1427187DOI10.1007/BF02614440
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.