A sample-time adjusted feedback for robust bounded output stabilization

Patricio Ordaz; Hussain Alazki; Alexander Poznyak

Kybernetika (2013)

  • Volume: 49, Issue: 6, page 911-934
  • ISSN: 0023-5954

Abstract

top
This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing a boundedness of all possible trajectories around the origin. To fulfill this property some modification of AEM are introduced: basically, some sort of sample-time corrections of the feedback parameters are required. The optimization of feedback within this class of controllers is associated with the selection of the feedback parameters which provide the trajectory converges within an ellipsoid of a “minimal size“. The effectiveness of the suggested approach is illustrated by its application to a flexible arm system).

How to cite

top

Ordaz, Patricio, Alazki, Hussain, and Poznyak, Alexander. "A sample-time adjusted feedback for robust bounded output stabilization." Kybernetika 49.6 (2013): 911-934. <http://eudml.org/doc/260807>.

@article{Ordaz2013,
abstract = {This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing a boundedness of all possible trajectories around the origin. To fulfill this property some modification of AEM are introduced: basically, some sort of sample-time corrections of the feedback parameters are required. The optimization of feedback within this class of controllers is associated with the selection of the feedback parameters which provide the trajectory converges within an ellipsoid of a “minimal size“. The effectiveness of the suggested approach is illustrated by its application to a flexible arm system).},
author = {Ordaz, Patricio, Alazki, Hussain, Poznyak, Alexander},
journal = {Kybernetika},
keywords = {sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system; sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system},
language = {eng},
number = {6},
pages = {911-934},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A sample-time adjusted feedback for robust bounded output stabilization},
url = {http://eudml.org/doc/260807},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Ordaz, Patricio
AU - Alazki, Hussain
AU - Poznyak, Alexander
TI - A sample-time adjusted feedback for robust bounded output stabilization
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 911
EP - 934
AB - This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing a boundedness of all possible trajectories around the origin. To fulfill this property some modification of AEM are introduced: basically, some sort of sample-time corrections of the feedback parameters are required. The optimization of feedback within this class of controllers is associated with the selection of the feedback parameters which provide the trajectory converges within an ellipsoid of a “minimal size“. The effectiveness of the suggested approach is illustrated by its application to a flexible arm system).
LA - eng
KW - sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system; sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system
UR - http://eudml.org/doc/260807
ER -

References

top
  1. Ahmed-Ali, T., Lamnabhi-Lagarrigue, F., 10.1109/TAC.2011.2168049, IEEE Trans. Automat. Control 57 (2012), 4, 995-1000. MR2952330DOI10.1109/TAC.2011.2168049
  2. Blanchini, F., 10.1016/S0005-1098(99)00113-2, Automatica 35 (1999), 11, 1747-1767. MR1831764DOI10.1016/S0005-1098(99)00113-2
  3. Blanchini, F., Miani, F., Set-Theoretic Methods in Control., Birkhauser, Boston 2008. Zbl1140.93001MR2359816
  4. Bortoff, S. A., Lynch, A. F., Synthesis of Optimal Nonlinear Observersr., 34th IEEE Conference on Decision and Control 1 (1995), 95-100. 
  5. Dahleh, M. A., Pearson, J. B., 10.1109/9.1288, IEEE Trans. on Automat. Control 33 (1988), 8, 722-731. Zbl0657.93019MR0950793DOI10.1109/9.1288
  6. Davila, J., Poznyak, A., 10.1002/rnc.1599, Internat. J. Robust and Nonlinear Control 21 (2011), 473-487. Zbl1214.93026MR2808892DOI10.1002/rnc.1599
  7. Duncan, G. J., Schweppe, F. C., 10.1109/TAC.1971.1099781, IEEE Trans. Automat. Control 16 (1971), 5, 411-423. MR0287947DOI10.1109/TAC.1971.1099781
  8. Gonzalez, S., Polyakov, A., Poznyak, A., 10.1134/S0005117911030064, Automat. Remote Control 72 (2011), 3, 540-555. Zbl1229.93138MR2828448DOI10.1134/S0005117911030064
  9. Ioannou, P., Sun, J., Robust Adaptive Control., Prentice Hall, Inc, 1996. Zbl0839.93002
  10. Jong, M. L., Jay, H. L., 10.1016/j.automatica.2005.02.006, Automatica 41 (2005), 1281-1288. Zbl1092.93011MR2160128DOI10.1016/j.automatica.2005.02.006
  11. Kabamba, P. T., Hara, S., 10.1109/9.237646, IEEE Trans. Automat. Control 38 (1993), 9, 1337-1358. Zbl0787.93068MR1240826DOI10.1109/9.237646
  12. Kurzhanski, A. B., Veliov, V. M., Modeling Techniques and Uncertain Systems., Birkhauser, New York 1994. MR1287643
  13. Kou, S. R., Elliott, D. L., Tarn, T. J., Exponential observers for non-linear dynamic systems., Inform. Control 29 (1975), 393-428. MR0384227
  14. Min, W., Zhou, Z. Lan, Jinhua, S., 10.1109/TAC.2011.2112473, IEEE Trans. Automat. Control 56 (2011), 6, 1452-1457. MR2839242DOI10.1109/TAC.2011.2112473
  15. Narendra, K. S., Annaswamy, A. M., Stable Adaptive Systems., Dover Publications Inc., 2005. Zbl1217.93081
  16. Nazin, A., Polyak, B., Topunov, M., 10.1134/S0005117907030083, Automat. Remote Control 68 (2007), 3, 467-486. Zbl1125.93370MR2304813DOI10.1134/S0005117907030083
  17. O'Reilly, J., Observers for Linear Systems., Academic Press, 1983. Zbl0513.93001
  18. Ordaz, P., Poznyak, A., Stabilizaton of furuta's pendulum with out model: Attractive ellipsoid method., In: 51th IEEE Conference of Decision and Control, Hawaii 2012, pp. 7285-7290. 
  19. Poliakov, A., Poznyak, A., 10.1016/j.automatica.2011.02.013, Automatica 47 (2011), 1450-1454. MR2889242DOI10.1016/j.automatica.2011.02.013
  20. Poznyak, A., Advanced Mathematical Tools for Automatic Control Engineers: Deterministic techniques. Vol. 1., Elsevier 2008. MR2374025
  21. Poznyak, A., Azhmyakov, V., Mera, M., 10.1080/00207179.2011.603097, Internat. J. Control 8 (2011), 4, 1408-1416. MR2830870DOI10.1080/00207179.2011.603097
  22. Proychev, T. P., Mishkov, R. L., 10.1016/0005-1098(93)90145-J, Automatica 29 (1993), 2, 495-498. MR1211308DOI10.1016/0005-1098(93)90145-J
  23. Rudin, W., Functional Analysis. Second edition., MacGraw-Hill, Inc. 1991. MR1157815
  24. Sussmann, H. J., Sontag, E. D., Yang, Y., 10.1109/9.362853, IEEE Trans. Automat. Control 39 (1994), 12, 2411-2425. Zbl0811.93046MR1337566DOI10.1109/9.362853
  25. Tingshu, H., Zongli, L., Control Systems with Actuator Saturation: Analyze and Design., Birkhauser, Boston 2001. 
  26. Teel, A. R., 10.1109/9.536496, IEEE Trans. Automat. Control 41 (1996), 9, 1256-1270. Zbl0863.93073MR1409471DOI10.1109/9.536496
  27. Utkin, V., 10.1109/41.184818, IEEE Trans. on Industrial Electronics 40 (1993), 1, 23-36. DOI10.1109/41.184818
  28. Walcott, B., Corless, M., Zak, S., 10.1080/00207178708933870, Internat. J. Control 45 (1987), 6, 2109-2132. Zbl0627.93012MR0891800DOI10.1080/00207178708933870
  29. Zeitz, M., 10.1016/0167-6911(87)90021-1, Systems Control Lett. 9 (1987), 149-156. Zbl0624.93012MR0906234DOI10.1016/0167-6911(87)90021-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.