Derivations of homotopy algebras

Tom Lada; Melissa Tolley

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 5, page 309-315
  • ISSN: 0044-8753

Abstract

top
We recall the definition of strong homotopy derivations of A algebras and introduce the corresponding definition for L algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.

How to cite

top

Lada, Tom, and Tolley, Melissa. "Derivations of homotopy algebras." Archivum Mathematicum 049.5 (2013): 309-315. <http://eudml.org/doc/260816>.

@article{Lada2013,
abstract = {We recall the definition of strong homotopy derivations of $A_\infty $ algebras and introduce the corresponding definition for $L_\infty $ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.},
author = {Lada, Tom, Tolley, Melissa},
journal = {Archivum Mathematicum},
keywords = {$L_\infty $ algebra; $A_\infty $ algebra; strong homotopy derivation; algebra; algebra; strong homotopy derivation},
language = {eng},
number = {5},
pages = {309-315},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Derivations of homotopy algebras},
url = {http://eudml.org/doc/260816},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Lada, Tom
AU - Tolley, Melissa
TI - Derivations of homotopy algebras
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 309
EP - 315
AB - We recall the definition of strong homotopy derivations of $A_\infty $ algebras and introduce the corresponding definition for $L_\infty $ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.
LA - eng
KW - $L_\infty $ algebra; $A_\infty $ algebra; strong homotopy derivation; algebra; algebra; strong homotopy derivation
UR - http://eudml.org/doc/260816
ER -

References

top
  1. Allocca, M., Lada, T., A finite dimensional A algebra example, Georgian Math. J. 12 (10) (2010), 1–12. (2010) Zbl1207.18014MR2640644
  2. Kajiura, H., Stasheff, J., 10.1007/s00220-006-1539-2, Comm. Math. Phys. 263 (3) (2006), 553–581. (2006) Zbl1125.18012MR2211816DOI10.1007/s00220-006-1539-2
  3. Lada, T., Commutators of A structures, Contemporary Mathematics, 1999, pp. 227–233. (1999) Zbl0940.16015
  4. Lada, T., Markl, M., 10.1080/00927879508825335, Comm. Algebra 23 (6) (1995), 2147–2161. (1995) Zbl0999.17019DOI10.1080/00927879508825335
  5. Lada, T., Stasheff, J., 10.1007/BF00671791, Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. (1993) Zbl0824.17024DOI10.1007/BF00671791
  6. Stasheff, J., Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc. 108 (1963), 293–312. (1963) 
  7. Tolley, M., The connections between A and L algebras, Ph.D. thesis, NCSU, 2013. (2013) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.