Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces

Pengyu Chen; Yongxiang Li

Applications of Mathematics (2014)

  • Volume: 59, Issue: 1, page 99-120
  • ISSN: 0862-7940

Abstract

top
In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space E u ' ( t ) + A u ( t ) = f ( t , u ( t ) , G u ( t ) ) , t J , t t k , Δ u | t = t k = u ( t k + ) - u ( t k - ) = I k ( u ( t k ) ) , k = 1 , 2 , , m , u ( 0 ) = g ( u ) + x 0 , where A : D ( A ) E E is a closed linear operator and - A generates a strongly continuous semigroup T ( t ) ( t 0 ) on E , f C ( J × E × E , E ) , J = [ 0 , a ] , 0 < t 1 < t 2 < < t m < a , I k C ( E , E ) , k = 1 , 2 , , m , and g constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that - A generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.

How to cite

top

Chen, Pengyu, and Li, Yongxiang. "Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces." Applications of Mathematics 59.1 (2014): 99-120. <http://eudml.org/doc/260820>.

@article{Chen2014,
abstract = {In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$\[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \}(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\ne t\_k, \Delta u |\_\{t=t\_k\}=u(t\_k^+)-u(t\_k^-)=I\_k(u(t\_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x\_0, \end\{array\}\right.\} \] where $A\colon D(A)\subset E\rightarrow E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$$(t\ge 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0<t_1<t_2<\dots <t_m<a$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.},
author = {Chen, Pengyu, Li, Yongxiang},
journal = {Applications of Mathematics},
keywords = {evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution; evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution},
language = {eng},
number = {1},
pages = {99-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces},
url = {http://eudml.org/doc/260820},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Chen, Pengyu
AU - Li, Yongxiang
TI - Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 99
EP - 120
AB - In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$\[ {\left\lbrace \begin{array}{ll} u^{\prime }(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\ne t_k, \Delta u |_{t=t_k}=u(t_k^+)-u(t_k^-)=I_k(u(t_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x_0, \end{array}\right.} \] where $A\colon D(A)\subset E\rightarrow E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$$(t\ge 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0<t_1<t_2<\dots <t_m<a$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.
LA - eng
KW - evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution; evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution
UR - http://eudml.org/doc/260820
ER -

References

top
  1. Ahmed, N. U., Impulsive evolution equations in infinite dimensional spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 11-24. (2003) Zbl1023.49025MR1974227
  2. Ahmed, N. U., Optimal feedback control for impulsive systems on the space of finitely additive measures, Publ. Math. 70 (2007), 371-393. (2007) Zbl1164.34026MR2310657
  3. Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60 Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
  4. Banasiak, J., Arlotti, L., Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics Springer, London (2006). (2006) Zbl1097.47038MR2178970
  5. Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications 2 Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133
  6. Benchohra, M., Ntouyas, S. K., 10.1006/jmaa.2000.7394, J. Math. Anal. Appl. 258 (2001), 573-590. (2001) Zbl0982.45008MR1835560DOI10.1006/jmaa.2000.7394
  7. Byszewski, L., Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dyn. Syst. Appl. 5 (1996), 595-605. (1996) Zbl0869.47034MR1424567
  8. Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494-505. (1991) Zbl0748.34040MR1137634DOI10.1016/0022-247X(91)90164-U
  9. Byszewski, L., Lakshmikantham, V., 10.1080/00036819008839989, Appl. Anal. 40 (1991), 11-19. (1991) Zbl0694.34001MR1121321DOI10.1080/00036819008839989
  10. Chang, Y.-K., Anguraj, A., Arjunan, M. M., Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal., Hybrid Syst. 2 (2008), 209-218. (2008) Zbl1170.35467MR2382006
  11. Chang, Y.-K., Anguraj, A., Karthikeyan, K., 10.1016/j.na.2009.02.121, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4377-4386. (2009) Zbl1178.34071MR2548667DOI10.1016/j.na.2009.02.121
  12. Deimling, K., Nonlinear Functional Analysis, Springer Berlin (1985). (1985) Zbl0559.47040MR0787404
  13. Deng, K., 10.1006/jmaa.1993.1373, J. Math. Anal. Appl. 179 (1993), 630-637. (1993) Zbl0798.35076MR1249842DOI10.1006/jmaa.1993.1373
  14. Du, Y., 10.1080/00036819008839957, Appl. Anal. 38 (1990), 1-20. (1990) Zbl0671.47054MR1116172DOI10.1080/00036819008839957
  15. Du, S. W., Lakshmikantham, V., 10.1016/0022-247X(82)90134-2, J. Math. Anal. Appl. 87 (1982), 454-459. (1982) Zbl0523.34057MR0658024DOI10.1016/0022-247X(82)90134-2
  16. Erbe, L. H., Liu, X., 10.1080/00036818908839897, Appl. Anal. 34 (1989), 231-250. (1989) Zbl0662.34015MR1387172DOI10.1080/00036818908839897
  17. Ezzinbi, K., Fu, X., Hilal, K., 10.1016/j.na.2006.08.003, Nonlinear Anal., Theory Methods Appl. 67 (2007), 1613-1622. (2007) Zbl1119.35105MR2323307DOI10.1016/j.na.2006.08.003
  18. Fan, Z., 10.1016/j.na.2008.07.036, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3829-3836. (2009) Zbl1170.34345MR2515302DOI10.1016/j.na.2008.07.036
  19. Fan, Z., 10.1016/j.na.2009.07.049, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1104-1109. (2010) Zbl1188.34073MR2579372DOI10.1016/j.na.2009.07.049
  20. Fan, Z., Li, G., 10.1016/j.jfa.2009.10.023, J. Funct. Anal. 258 (2010), 1709-1727. (2010) Zbl1193.35099MR2566317DOI10.1016/j.jfa.2009.10.023
  21. Fu, X., Ezzinbi, K., 10.1016/S0362-546X(03)00047-6, Nonlinear Anal., Theory Methods Appl. 54 (2003), 215-227. (2003) Zbl1034.34096MR1979731DOI10.1016/S0362-546X(03)00047-6
  22. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
  23. Guo, D., Liu, X., 10.1006/jmaa.1993.1276, J. Math. Anal. Appl. 177 (1993), 538-552. (1993) Zbl0787.45008MR1231500DOI10.1006/jmaa.1993.1276
  24. Heinz, H.-P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. (1983) Zbl0528.47046MR0726478
  25. Jackson, D., 10.1006/jmaa.1993.1022, J. Math. Anal. Appl. 172 (1993), 256-265. (1993) Zbl0814.35060MR1199510DOI10.1006/jmaa.1993.1022
  26. Ji, S., Li, G., Wang, M., 10.1016/j.amc.2011.01.107, Appl. Math. Comput. 217 (2011), 6981-6989. (2011) Zbl1219.93013MR2775688DOI10.1016/j.amc.2011.01.107
  27. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551
  28. Li, Y., Existence of solutions of initial value problems for abstract semilinear evolution equations, Acta Math. Sin. 48 (2005), 1089-1094 Chinese. (2005) Zbl1124.34341MR2205049
  29. Li, Y., The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin. 39 (1996), 666-672 Chinese. (1996) Zbl0870.47040MR1436036
  30. Li, Y., Liu, Z., 10.1016/j.na.2005.11.013, Nonlinear Anal., Theory Methods Appl. 66 (2007), 83-92. (2007) Zbl1109.34005MR2271638DOI10.1016/j.na.2005.11.013
  31. Liang, J., Liu, J. H., Xiao, T.-J., 10.1016/j.na.2004.02.007, Nonlinear Anal., Theory Methods Appl. 57 (2004), 183-189. (2004) Zbl1083.34045MR2056425DOI10.1016/j.na.2004.02.007
  32. Liang, J., Liu, J. H., Xiao, T.-J., 10.1016/j.mcm.2008.05.046, Math. Comput. Modelling 49 (2009), 798-804. (2009) Zbl1173.34048MR2483682DOI10.1016/j.mcm.2008.05.046
  33. Liang, J., Casteren, J. van, Xiao, T.-J., 10.1016/S0362-546X(01)00743-X, Nonlinear Anal., Theory Methods Appl. 50 (2002), 173-189. (2002) MR1904939DOI10.1016/S0362-546X(01)00743-X
  34. Lin, Y., Liu, J. H., 10.1016/0362-546X(94)00141-0, Nonlinear Anal., Theory Methods Appl. 26 (1996), 1023-1033. (1996) Zbl0916.45014MR1362770DOI10.1016/0362-546X(94)00141-0
  35. Liu, J. H., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. (1999) Zbl0932.34067MR1679758
  36. Ntouyas, S. K., Tsamatos, P. C., 10.1080/00036819708840525, Appl. Anal. 64 (1997), 99-105. (1997) Zbl0874.35126MR1460074DOI10.1080/00036819708840525
  37. Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44 Springer, New York (1983). (1983) Zbl0516.47023MR0710486
  38. Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. (1997) Zbl0879.34014MR1435816
  39. Sun, J., Zhao, Z., Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces, Ann. Differ. Equations 8 (1992), 469-475. (1992) MR1215993
  40. Xiao, T.-J., Liang, J., 10.1016/j.na.2005.02.067, Nonlinear Anal., Theory Methods Appl. (electronic only) 63 (2005), e225--e232. (2005) Zbl1159.35383DOI10.1016/j.na.2005.02.067
  41. Xue, X., 10.1016/j.na.2005.05.019, Nonlinear Anal., Theory Methods Appl. 63 (2005), 575-586. (2005) Zbl1095.34040MR2175816DOI10.1016/j.na.2005.05.019
  42. Xue, X., 10.1016/j.na.2008.03.046, Nonlinear Anal., Theory Methods Appl. 70 (2009), 2593-2601. (2009) Zbl1176.34071MR2499726DOI10.1016/j.na.2008.03.046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.