Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
Applications of Mathematics (2014)
- Volume: 59, Issue: 1, page 99-120
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChen, Pengyu, and Li, Yongxiang. "Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces." Applications of Mathematics 59.1 (2014): 99-120. <http://eudml.org/doc/260820>.
@article{Chen2014,
abstract = {In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$\[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \}(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\ne t\_k, \Delta u |\_\{t=t\_k\}=u(t\_k^+)-u(t\_k^-)=I\_k(u(t\_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x\_0, \end\{array\}\right.\} \]
where $A\colon D(A)\subset E\rightarrow E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$$(t\ge 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0<t_1<t_2<\dots <t_m<a$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.},
author = {Chen, Pengyu, Li, Yongxiang},
journal = {Applications of Mathematics},
keywords = {evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution; evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution},
language = {eng},
number = {1},
pages = {99-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces},
url = {http://eudml.org/doc/260820},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Chen, Pengyu
AU - Li, Yongxiang
TI - Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 99
EP - 120
AB - In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$\[ {\left\lbrace \begin{array}{ll} u^{\prime }(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\ne t_k, \Delta u |_{t=t_k}=u(t_k^+)-u(t_k^-)=I_k(u(t_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x_0, \end{array}\right.} \]
where $A\colon D(A)\subset E\rightarrow E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$$(t\ge 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0<t_1<t_2<\dots <t_m<a$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.
LA - eng
KW - evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution; evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution
UR - http://eudml.org/doc/260820
ER -
References
top- Ahmed, N. U., Impulsive evolution equations in infinite dimensional spaces, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 11-24. (2003) Zbl1023.49025MR1974227
- Ahmed, N. U., Optimal feedback control for impulsive systems on the space of finitely additive measures, Publ. Math. 70 (2007), 371-393. (2007) Zbl1164.34026MR2310657
- Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60 Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
- Banasiak, J., Arlotti, L., Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics Springer, London (2006). (2006) Zbl1097.47038MR2178970
- Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications 2 Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133
- Benchohra, M., Ntouyas, S. K., 10.1006/jmaa.2000.7394, J. Math. Anal. Appl. 258 (2001), 573-590. (2001) Zbl0982.45008MR1835560DOI10.1006/jmaa.2000.7394
- Byszewski, L., Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dyn. Syst. Appl. 5 (1996), 595-605. (1996) Zbl0869.47034MR1424567
- Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494-505. (1991) Zbl0748.34040MR1137634DOI10.1016/0022-247X(91)90164-U
- Byszewski, L., Lakshmikantham, V., 10.1080/00036819008839989, Appl. Anal. 40 (1991), 11-19. (1991) Zbl0694.34001MR1121321DOI10.1080/00036819008839989
- Chang, Y.-K., Anguraj, A., Arjunan, M. M., Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal., Hybrid Syst. 2 (2008), 209-218. (2008) Zbl1170.35467MR2382006
- Chang, Y.-K., Anguraj, A., Karthikeyan, K., 10.1016/j.na.2009.02.121, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4377-4386. (2009) Zbl1178.34071MR2548667DOI10.1016/j.na.2009.02.121
- Deimling, K., Nonlinear Functional Analysis, Springer Berlin (1985). (1985) Zbl0559.47040MR0787404
- Deng, K., 10.1006/jmaa.1993.1373, J. Math. Anal. Appl. 179 (1993), 630-637. (1993) Zbl0798.35076MR1249842DOI10.1006/jmaa.1993.1373
- Du, Y., 10.1080/00036819008839957, Appl. Anal. 38 (1990), 1-20. (1990) Zbl0671.47054MR1116172DOI10.1080/00036819008839957
- Du, S. W., Lakshmikantham, V., 10.1016/0022-247X(82)90134-2, J. Math. Anal. Appl. 87 (1982), 454-459. (1982) Zbl0523.34057MR0658024DOI10.1016/0022-247X(82)90134-2
- Erbe, L. H., Liu, X., 10.1080/00036818908839897, Appl. Anal. 34 (1989), 231-250. (1989) Zbl0662.34015MR1387172DOI10.1080/00036818908839897
- Ezzinbi, K., Fu, X., Hilal, K., 10.1016/j.na.2006.08.003, Nonlinear Anal., Theory Methods Appl. 67 (2007), 1613-1622. (2007) Zbl1119.35105MR2323307DOI10.1016/j.na.2006.08.003
- Fan, Z., 10.1016/j.na.2008.07.036, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3829-3836. (2009) Zbl1170.34345MR2515302DOI10.1016/j.na.2008.07.036
- Fan, Z., 10.1016/j.na.2009.07.049, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1104-1109. (2010) Zbl1188.34073MR2579372DOI10.1016/j.na.2009.07.049
- Fan, Z., Li, G., 10.1016/j.jfa.2009.10.023, J. Funct. Anal. 258 (2010), 1709-1727. (2010) Zbl1193.35099MR2566317DOI10.1016/j.jfa.2009.10.023
- Fu, X., Ezzinbi, K., 10.1016/S0362-546X(03)00047-6, Nonlinear Anal., Theory Methods Appl. 54 (2003), 215-227. (2003) Zbl1034.34096MR1979731DOI10.1016/S0362-546X(03)00047-6
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
- Guo, D., Liu, X., 10.1006/jmaa.1993.1276, J. Math. Anal. Appl. 177 (1993), 538-552. (1993) Zbl0787.45008MR1231500DOI10.1006/jmaa.1993.1276
- Heinz, H.-P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. (1983) Zbl0528.47046MR0726478
- Jackson, D., 10.1006/jmaa.1993.1022, J. Math. Anal. Appl. 172 (1993), 256-265. (1993) Zbl0814.35060MR1199510DOI10.1006/jmaa.1993.1022
- Ji, S., Li, G., Wang, M., 10.1016/j.amc.2011.01.107, Appl. Math. Comput. 217 (2011), 6981-6989. (2011) Zbl1219.93013MR2775688DOI10.1016/j.amc.2011.01.107
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551
- Li, Y., Existence of solutions of initial value problems for abstract semilinear evolution equations, Acta Math. Sin. 48 (2005), 1089-1094 Chinese. (2005) Zbl1124.34341MR2205049
- Li, Y., The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin. 39 (1996), 666-672 Chinese. (1996) Zbl0870.47040MR1436036
- Li, Y., Liu, Z., 10.1016/j.na.2005.11.013, Nonlinear Anal., Theory Methods Appl. 66 (2007), 83-92. (2007) Zbl1109.34005MR2271638DOI10.1016/j.na.2005.11.013
- Liang, J., Liu, J. H., Xiao, T.-J., 10.1016/j.na.2004.02.007, Nonlinear Anal., Theory Methods Appl. 57 (2004), 183-189. (2004) Zbl1083.34045MR2056425DOI10.1016/j.na.2004.02.007
- Liang, J., Liu, J. H., Xiao, T.-J., 10.1016/j.mcm.2008.05.046, Math. Comput. Modelling 49 (2009), 798-804. (2009) Zbl1173.34048MR2483682DOI10.1016/j.mcm.2008.05.046
- Liang, J., Casteren, J. van, Xiao, T.-J., 10.1016/S0362-546X(01)00743-X, Nonlinear Anal., Theory Methods Appl. 50 (2002), 173-189. (2002) MR1904939DOI10.1016/S0362-546X(01)00743-X
- Lin, Y., Liu, J. H., 10.1016/0362-546X(94)00141-0, Nonlinear Anal., Theory Methods Appl. 26 (1996), 1023-1033. (1996) Zbl0916.45014MR1362770DOI10.1016/0362-546X(94)00141-0
- Liu, J. H., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. (1999) Zbl0932.34067MR1679758
- Ntouyas, S. K., Tsamatos, P. C., 10.1080/00036819708840525, Appl. Anal. 64 (1997), 99-105. (1997) Zbl0874.35126MR1460074DOI10.1080/00036819708840525
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44 Springer, New York (1983). (1983) Zbl0516.47023MR0710486
- Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. (1997) Zbl0879.34014MR1435816
- Sun, J., Zhao, Z., Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces, Ann. Differ. Equations 8 (1992), 469-475. (1992) MR1215993
- Xiao, T.-J., Liang, J., 10.1016/j.na.2005.02.067, Nonlinear Anal., Theory Methods Appl. (electronic only) 63 (2005), e225--e232. (2005) Zbl1159.35383DOI10.1016/j.na.2005.02.067
- Xue, X., 10.1016/j.na.2005.05.019, Nonlinear Anal., Theory Methods Appl. 63 (2005), 575-586. (2005) Zbl1095.34040MR2175816DOI10.1016/j.na.2005.05.019
- Xue, X., 10.1016/j.na.2008.03.046, Nonlinear Anal., Theory Methods Appl. 70 (2009), 2593-2601. (2009) Zbl1176.34071MR2499726DOI10.1016/j.na.2008.03.046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.