Some evolution equations under the List's flow and their applications
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 41-52
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMa, Bingqing. "Some evolution equations under the List's flow and their applications." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 41-52. <http://eudml.org/doc/260829>.
@article{Ma2014,
abstract = {In this paper, we consider some
evolution equations of generalized
Ricci curvature and generalized scalar
curvature under the List’s flow.
As applications, we obtain $L^2$-estimates
for generalized scalar curvature and
the first variational formulae for
non-negative eigenvalues with respect
to the Laplacian.},
author = {Ma, Bingqing},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {List's flow; eigenvalue; scalar curvature; List's flow; eigenvalue; scalar curvature},
language = {eng},
number = {1},
pages = {41-52},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some evolution equations under the List's flow and their applications},
url = {http://eudml.org/doc/260829},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Ma, Bingqing
TI - Some evolution equations under the List's flow and their applications
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 41
EP - 52
AB - In this paper, we consider some
evolution equations of generalized
Ricci curvature and generalized scalar
curvature under the List’s flow.
As applications, we obtain $L^2$-estimates
for generalized scalar curvature and
the first variational formulae for
non-negative eigenvalues with respect
to the Laplacian.
LA - eng
KW - List's flow; eigenvalue; scalar curvature; List's flow; eigenvalue; scalar curvature
UR - http://eudml.org/doc/260829
ER -
References
top- Cao X.D., Hamilton R., 10.1007/s00039-009-0024-4, Geom. Funct. Anal. 19 (2009), 989–1000. Zbl1183.53059MR2570311DOI10.1007/s00039-009-0024-4
- Fang S.W., 10.1007/s10711-011-9690-0, Geom. Dedicata 161 (2012), 11–22. Zbl1253.53034MR2994028DOI10.1007/s10711-011-9690-0
- Ma B.Q., Huang G.Y., 10.1007/s00013-013-0534-z, Arch. Math. 100 (2013), 593–599. MR3069112DOI10.1007/s00013-013-0534-z
- Li Y., Eigenvalues and entropys under the harmonic-Ricci flow, arXiv:1011.1697, to appear in Pacific J. Math.
- List B., Evolution of an extended Ricci flow system, PhD Thesis, AEI Potsdam, http://www.diss.fu-berlin.de/2006/180/index.html (2006). Zbl1166.53044
- List B., 10.4310/CAG.2008.v16.n5.a5, Comm. Anal. Geom. 16 (2008), 1007–1048. Zbl1166.53044MR2471366DOI10.4310/CAG.2008.v16.n5.a5
- Lott J., Sesum N., Ricci flow on three-dimensional manifolds with symmetry, arXiv:1102.4384, to appear in Comm. Math. Helv.
- Müller R., Ricci flow coupled with harmonic map flow, Ann. Sci. Éc. Norm. Supér. 45 (2012), 101–142. Zbl1247.53082MR2961788
- Qian Z.M., 10.1016/j.bulsci.2007.12.002, Bull. Sci. Math. 133 (2009), 145–168. Zbl1160.53368MR2494463DOI10.1016/j.bulsci.2007.12.002
- Wang L.F., 10.1007/s11040-012-9115-9, Math. Phys. Anal. Geom. 15 (2012), 343–360. Zbl1257.53101MR2996456DOI10.1007/s11040-012-9115-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.