Ricci flow coupled with harmonic map flow
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 1, page 101-142
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMüller, Reto. "Ricci flow coupled with harmonic map flow." Annales scientifiques de l'École Normale Supérieure 45.1 (2012): 101-142. <http://eudml.org/doc/272187>.
@article{Müller2012,
abstract = {We investigate a coupled system of the Ricci flow on a closed manifold $M$ with the harmonic map flow of a map $\phi $ from $M$ to some closed target manifold $N$,\[ \frac\{\partial \}\{\partial t\} g = -2\mathrm \{Rc\}\{\} + 2\alpha \nabla \phi \otimes \nabla \phi ,\qquad \frac\{\partial \}\{\partial t\} \phi = \tau \_g \phi , \]where $\alpha $ is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of $\phi $ a-priori by choosing $\alpha $ large enough. Moreover, it suffices to bound the curvature of $(M,g(t))$ to also obtain control of $\phi $ and all its derivatives if $\alpha \ge \underline\{\alpha \}>0$. Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of anenergy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.},
author = {Müller, Reto},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Ricci flow; harmonic map flow},
language = {eng},
number = {1},
pages = {101-142},
publisher = {Société mathématique de France},
title = {Ricci flow coupled with harmonic map flow},
url = {http://eudml.org/doc/272187},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Müller, Reto
TI - Ricci flow coupled with harmonic map flow
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 1
SP - 101
EP - 142
AB - We investigate a coupled system of the Ricci flow on a closed manifold $M$ with the harmonic map flow of a map $\phi $ from $M$ to some closed target manifold $N$,\[ \frac{\partial }{\partial t} g = -2\mathrm {Rc}{} + 2\alpha \nabla \phi \otimes \nabla \phi ,\qquad \frac{\partial }{\partial t} \phi = \tau _g \phi , \]where $\alpha $ is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of $\phi $ a-priori by choosing $\alpha $ large enough. Moreover, it suffices to bound the curvature of $(M,g(t))$ to also obtain control of $\phi $ and all its derivatives if $\alpha \ge \underline{\alpha }>0$. Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of anenergy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.
LA - eng
KW - Ricci flow; harmonic map flow
UR - http://eudml.org/doc/272187
ER -
References
top- [1] S. Bando, Real analyticity of solutions of Hamilton’s equation, Math. Z.195 (1987), 93–97. Zbl0606.58051MR888130
- [2] S. Bernstein, Sur la généralisation du problème de Dirichlet II, Math. Ann.69 (1910), 82–136. Zbl41.0427.02MR1511579JFM41.0427.02
- [3] H.-D. Cao & X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math.10 (2006), 165–492. Zbl1200.53058MR2233789
- [4] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. Zbl1157.53034MR2302600
- [5] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. Zbl1157.53035MR2365237
- [6] B. Chow & D. Knopf, The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc., 2004. Zbl1086.53085MR2061425
- [7] B. Chow, P. Lu & L. Ni, Hamilton’s Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc., 2006. Zbl1118.53001MR2274812
- [8] T. H. Colding & W. P. Minicozzi II, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc.18 (2005), 561–569. Zbl1083.53058MR2138137
- [9] T. H. Colding & W. P. Minicozzi II, Width and finite extinction time of Ricci flow, Geom. Topol.12 (2008), 2537–2586. Zbl1161.53352MR2460871
- [10] D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom.18 (1983), 157–162. Zbl0517.53044MR697987
- [11] J. Eells & L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.10 (1978), 1–68. Zbl0401.58003MR495450
- [12] J. Eells & L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.20 (1988), 385–524. Zbl0669.58009MR956352
- [13] J. Eells & J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109–160. Zbl0122.40102MR164306
- [14] C. Guenther, J. Isenberg & D. Knopf, Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom.10 (2002), 741–777. Zbl1028.53043MR1925501
- [15] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17 (1982), 255–306. Zbl0504.53034MR664497
- [16] R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. Zbl0867.53030MR1375255
- [17] P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math.75 (1953), 449–476. Zbl0052.32201MR58082
- [18] J. Jost, Riemannian geometry and geometric analysis, third éd., Universitext, Springer, 2002. Zbl1227.53001MR1871261
- [19] B. Kleiner & J. Lott, Notes on Perelman’s papers, Geom. Topol.12 (2008), 2587–2855. Zbl1204.53033MR2460872
- [20] T. Lamm, Biharmonic maps, Thèse, Albert-Ludwig-Universität Freiburg im Breisgau, 2005. Zbl1075.58013
- [21] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ. Math. I.H.É.S. 10 (1961). Zbl0098.42607
- [22] B. List, Evolution of an extended Ricci flow system, Thèse, Albert-Einstein-Institut, Berlin, 2005. Zbl1166.53044
- [23] J. Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann.339 (2007), 627–666. Zbl1135.53046MR2336062
- [24] C. Mantegazza & L. Martinazzi, A note on quasilinear parabolic equations on manifolds, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. Zbl1272.35123MR3060703
- [25] J. Morgan & G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc., 2007. Zbl1179.57045MR2334563
- [26] J. Morgan & G. Tian, Completion of the proof of the geometrization conjecture, preprint arXiv:0809.4040. Zbl1302.53001
- [27] R. Müller, Differential Harnack inequalities and the Ricci flow, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006. Zbl1103.58014MR2251315
- [28] R. Müller, The Ricci flow coupled with harmonic map heat flow, Thèse, ETH Zürich, 2009. Zbl1247.53082
- [29] R. Müller, Monotone volume formulas for geometric flows, J. reine angew. Math. 643 (2010), 39–57. Zbl1204.53054MR2658189
- [30] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math.63 (1956), 20–63. Zbl0070.38603MR75639
- [31] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math/0211159. Zbl1130.53001
- [32] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint arXiv:math/0307245. Zbl1130.53003
- [33] G. Perelman, Ricci flow with surgery on three-manifolds, preprint arXiv:math/0303109. Zbl1130.53002
- [34] H. Poincaré, Cinquième complément à l’Analysis Situs, Rend. Circ. Mat. Palermo18 (1904), 45–110. Zbl35.0504.13JFM35.0504.13
- [35] M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. Zbl0242.46001MR493421
- [36] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal.42 (1981), 110–120. Zbl0471.58025MR620582
- [37] O. C. Schnürer, F. Schulze & M. Simon, Stability of Euclidean space under Ricci flow, Comm. Anal. Geom.16 (2008), 127–158. Zbl1147.53055MR2411470
- [38] W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom.30 (1989), 223–301. Zbl0676.53044MR1001277
- [39] M. Simon, Deformation of Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom.10 (2002), 1033–1074. Zbl1034.58008
- [40] M. Struwe, Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., 1996, 257–339. Zbl0847.58012
- [41] T. C. Tao, Perelman’s proof of the Poincaré conjecture: a nonlinear PDE perspective, preprint arXiv:math/0610903.
- [42] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357–381. Zbl0496.57005
- [43] P. Topping, Lectures on the Ricci flow, London Math. Soc. Lecture Note Series 325, Cambridge Univ. Press, 2006. Zbl1105.58013
- [44] M. B. Williams, Results on coupled Ricci and harmonic map flows, preprint arXiv:1012.0291.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.