Ricci flow coupled with harmonic map flow

Reto Müller

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 1, page 101-142
  • ISSN: 0012-9593

Abstract

top
We investigate a coupled system of the Ricci flow on a closed manifold M with the harmonic map flow of a map φ from M to some closed target manifold N , t g = - 2 Rc + 2 α φ φ , t φ = τ g φ , where α is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of  φ a-priori by choosing α large enough. Moreover, it suffices to bound the curvature of  ( M , g ( t ) ) to also obtain control of  φ and all its derivatives if α α ̲ > 0 . Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of anenergy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.

How to cite

top

Müller, Reto. "Ricci flow coupled with harmonic map flow." Annales scientifiques de l'École Normale Supérieure 45.1 (2012): 101-142. <http://eudml.org/doc/272187>.

@article{Müller2012,
abstract = {We investigate a coupled system of the Ricci flow on a closed manifold $M$ with the harmonic map flow of a map $\phi $ from $M$ to some closed target manifold $N$,\[ \frac\{\partial \}\{\partial t\} g = -2\mathrm \{Rc\}\{\} + 2\alpha \nabla \phi \otimes \nabla \phi ,\qquad \frac\{\partial \}\{\partial t\} \phi = \tau \_g \phi , \]where $\alpha $ is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of $\phi $ a-priori by choosing $\alpha $ large enough. Moreover, it suffices to bound the curvature of $(M,g(t))$ to also obtain control of $\phi $ and all its derivatives if $\alpha \ge \underline\{\alpha \}&gt;0$. Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of anenergy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.},
author = {Müller, Reto},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Ricci flow; harmonic map flow},
language = {eng},
number = {1},
pages = {101-142},
publisher = {Société mathématique de France},
title = {Ricci flow coupled with harmonic map flow},
url = {http://eudml.org/doc/272187},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Müller, Reto
TI - Ricci flow coupled with harmonic map flow
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 1
SP - 101
EP - 142
AB - We investigate a coupled system of the Ricci flow on a closed manifold $M$ with the harmonic map flow of a map $\phi $ from $M$ to some closed target manifold $N$,\[ \frac{\partial }{\partial t} g = -2\mathrm {Rc}{} + 2\alpha \nabla \phi \otimes \nabla \phi ,\qquad \frac{\partial }{\partial t} \phi = \tau _g \phi , \]where $\alpha $ is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of $\phi $ a-priori by choosing $\alpha $ large enough. Moreover, it suffices to bound the curvature of $(M,g(t))$ to also obtain control of $\phi $ and all its derivatives if $\alpha \ge \underline{\alpha }&gt;0$. Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of anenergy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.
LA - eng
KW - Ricci flow; harmonic map flow
UR - http://eudml.org/doc/272187
ER -

References

top
  1. [1] S. Bando, Real analyticity of solutions of Hamilton’s equation, Math. Z.195 (1987), 93–97. Zbl0606.58051MR888130
  2. [2] S. Bernstein, Sur la généralisation du problème de Dirichlet II, Math. Ann.69 (1910), 82–136. Zbl41.0427.02MR1511579JFM41.0427.02
  3. [3] H.-D. Cao & X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math.10 (2006), 165–492. Zbl1200.53058MR2233789
  4. [4] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. Zbl1157.53034MR2302600
  5. [5] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. Zbl1157.53035MR2365237
  6. [6] B. Chow & D. Knopf, The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc., 2004. Zbl1086.53085MR2061425
  7. [7] B. Chow, P. Lu & L. Ni, Hamilton’s Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc., 2006. Zbl1118.53001MR2274812
  8. [8] T. H. Colding & W. P. Minicozzi II, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc.18 (2005), 561–569. Zbl1083.53058MR2138137
  9. [9] T. H. Colding & W. P. Minicozzi II, Width and finite extinction time of Ricci flow, Geom. Topol.12 (2008), 2537–2586. Zbl1161.53352MR2460871
  10. [10] D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom.18 (1983), 157–162. Zbl0517.53044MR697987
  11. [11] J. Eells & L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.10 (1978), 1–68. Zbl0401.58003MR495450
  12. [12] J. Eells & L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.20 (1988), 385–524. Zbl0669.58009MR956352
  13. [13] J. Eells & J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964), 109–160. Zbl0122.40102MR164306
  14. [14] C. Guenther, J. Isenberg & D. Knopf, Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom.10 (2002), 741–777. Zbl1028.53043MR1925501
  15. [15] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17 (1982), 255–306. Zbl0504.53034MR664497
  16. [16] R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. Zbl0867.53030MR1375255
  17. [17] P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math.75 (1953), 449–476. Zbl0052.32201MR58082
  18. [18] J. Jost, Riemannian geometry and geometric analysis, third éd., Universitext, Springer, 2002. Zbl1227.53001MR1871261
  19. [19] B. Kleiner & J. Lott, Notes on Perelman’s papers, Geom. Topol.12 (2008), 2587–2855. Zbl1204.53033MR2460872
  20. [20] T. Lamm, Biharmonic maps, Thèse, Albert-Ludwig-Universität Freiburg im Breisgau, 2005. Zbl1075.58013
  21. [21] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ. Math. I.H.É.S. 10 (1961). Zbl0098.42607
  22. [22] B. List, Evolution of an extended Ricci flow system, Thèse, Albert-Einstein-Institut, Berlin, 2005. Zbl1166.53044
  23. [23] J. Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann.339 (2007), 627–666. Zbl1135.53046MR2336062
  24. [24] C. Mantegazza & L. Martinazzi, A note on quasilinear parabolic equations on manifolds, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. Zbl1272.35123MR3060703
  25. [25] J. Morgan & G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc., 2007. Zbl1179.57045MR2334563
  26. [26] J. Morgan & G. Tian, Completion of the proof of the geometrization conjecture, preprint arXiv:0809.4040. Zbl1302.53001
  27. [27] R. Müller, Differential Harnack inequalities and the Ricci flow, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006. Zbl1103.58014MR2251315
  28. [28] R. Müller, The Ricci flow coupled with harmonic map heat flow, Thèse, ETH Zürich, 2009. Zbl1247.53082
  29. [29] R. Müller, Monotone volume formulas for geometric flows, J. reine angew. Math. 643 (2010), 39–57. Zbl1204.53054MR2658189
  30. [30] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math.63 (1956), 20–63. Zbl0070.38603MR75639
  31. [31] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math/0211159. Zbl1130.53001
  32. [32] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint arXiv:math/0307245. Zbl1130.53003
  33. [33] G. Perelman, Ricci flow with surgery on three-manifolds, preprint arXiv:math/0303109. Zbl1130.53002
  34. [34] H. Poincaré, Cinquième complément à l’Analysis Situs, Rend. Circ. Mat. Palermo18 (1904), 45–110. Zbl35.0504.13JFM35.0504.13
  35. [35] M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. Zbl0242.46001MR493421
  36. [36] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal.42 (1981), 110–120. Zbl0471.58025MR620582
  37. [37] O. C. Schnürer, F. Schulze & M. Simon, Stability of Euclidean space under Ricci flow, Comm. Anal. Geom.16 (2008), 127–158. Zbl1147.53055MR2411470
  38. [38] W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom.30 (1989), 223–301. Zbl0676.53044MR1001277
  39. [39] M. Simon, Deformation of C 0 Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom.10 (2002), 1033–1074. Zbl1034.58008
  40. [40] M. Struwe, Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., 1996, 257–339. Zbl0847.58012
  41. [41] T. C. Tao, Perelman’s proof of the Poincaré conjecture: a nonlinear PDE perspective, preprint arXiv:math/0610903. 
  42. [42] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357–381. Zbl0496.57005
  43. [43] P. Topping, Lectures on the Ricci flow, London Math. Soc. Lecture Note Series 325, Cambridge Univ. Press, 2006. Zbl1105.58013
  44. [44] M. B. Williams, Results on coupled Ricci and harmonic map flows, preprint arXiv:1012.0291. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.