On tropical Kleene star matrices and alcoved polytopes
Kybernetika (2013)
- Volume: 49, Issue: 6, page 897-910
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPuente, María Jesús de la. "On tropical Kleene star matrices and alcoved polytopes." Kybernetika 49.6 (2013): 897-910. <http://eudml.org/doc/260833>.
@article{Puente2013,
abstract = {In this paper we give a short, elementary proof of a known result in tropical mathematics, by which the convexity of the column span of a zero-diagonal real matrix $A$ is characterized by $A$ being a Kleene star. We give applications to alcoved polytopes, using normal idempotent matrices (which form a subclass of Kleene stars). For a normal matrix we define a norm and show that this is the radius of a hyperplane section of its tropical span.},
author = {Puente, María Jesús de la},
journal = {Kybernetika},
keywords = {tropical algebra; Kleene star; normal matrix; idempotent matrix; alcoved polytope; convex set; norm; tropical algebra; Kleene star matrices; normal idempotent matrices; alcoved polytopes; convex sets; matrix norms},
language = {eng},
number = {6},
pages = {897-910},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On tropical Kleene star matrices and alcoved polytopes},
url = {http://eudml.org/doc/260833},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Puente, María Jesús de la
TI - On tropical Kleene star matrices and alcoved polytopes
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 897
EP - 910
AB - In this paper we give a short, elementary proof of a known result in tropical mathematics, by which the convexity of the column span of a zero-diagonal real matrix $A$ is characterized by $A$ being a Kleene star. We give applications to alcoved polytopes, using normal idempotent matrices (which form a subclass of Kleene stars). For a normal matrix we define a norm and show that this is the radius of a hyperplane section of its tropical span.
LA - eng
KW - tropical algebra; Kleene star; normal matrix; idempotent matrix; alcoved polytope; convex set; norm; tropical algebra; Kleene star matrices; normal idempotent matrices; alcoved polytopes; convex sets; matrix norms
UR - http://eudml.org/doc/260833
ER -
References
top- Akian, M., Bapat, R., Gaubert, S., Max-plus algebra., In: Handbook of Linear Algebra, Chapter 25, (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007.
- Allamigeon, X., Gaubert, S., Goubault, E., 10.1007/s00454-012-9469-6, Discrete Comput. Geom. 49 (2013), 247-279. MR3017909DOI10.1007/s00454-012-9469-6
- Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P., Syncronization and Linearity., John Wiley, Chichester 1992.
- Butkovič, P., 10.1016/S0024-3795(02)00655-9, Linear Algebra Appl. 367 (2003), 313-335. Zbl1022.15017MR1976928DOI10.1016/S0024-3795(02)00655-9
- Butkovič, P., 10.1016/S0166-218X(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. Zbl0976.15013MR1780462DOI10.1016/S0166-218X(00)00212-2
- Butkovič, P., Max-plus Linear Systems: Theory and Algorithms., Springer, Berlin 2010.
- Butkovič, P., Schneider, H., Sergeev, S., 10.1016/j.laa.2006.10.004, Linear Algebra Appl. 421 (2007), 394-406. Zbl1119.15018MR2294351DOI10.1016/j.laa.2006.10.004
- Cohen, G., Gaubert, S., Quadrat, J. P., 10.1016/j.laa.2003.08.010, Lineal Algebra Appl. 379 (2004), 395-422. Zbl1042.46004MR2039751DOI10.1016/j.laa.2003.08.010
- Cuninghame-Green, R., Minimax algebra., Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1970. Zbl0739.90073MR0580321
- Cuninghame-Green, R. A., Minimax algebra and applications., In: Adv. Imag. Electr. Phys. 90, (P. Hawkes, ed.), Academic Press, San Diego 1995, pp. 1-121. Zbl0739.90073MR0403664
- Cuninghame-Green, R. A., Butkovič, P., 10.1016/j.laa.2004.03.022, Linear Algebra Appl. 389 (2004), 107-120. Zbl1059.15001MR2080398DOI10.1016/j.laa.2004.03.022
- Develin, M., Sturmfels, B., Tropical convexity., Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic), (2004), 205-206. Zbl1054.52004MR2054977
- Izhakian, Z., Johnson, M., Kambites, M., Pure dimension and projectivity of tropical politopes., arXiv: 1106.4525v2, 2012.
- Jiménez, A., Puente, M. J. de la, Six combinatorial classes of maximal convex tropical polyhedra., arXiv: 1205.4162, 2012.
- Johnson, M., Kambites, M., Idempotent tropical matrices and finite metric spaces., To appear in Adv. Geom.; arXiv: 1203.2480, 2012.
- Joswig, M., Kulas, K., 10.1515/advgeom.2010.012, Adv. Geom. 10 (2010), 333-352. Zbl1198.14060MR2629819DOI10.1515/advgeom.2010.012
- Kuhn, H. W., 10.1002/nav.3800020109, Naval Res. Logist. 2 (1955), 83-97. Zbl1187.90015MR0075510DOI10.1002/nav.3800020109
- Lam, T., Postnikov, A., 10.1007/s00454-006-1294-3, Discrete Comput. Geom. 38 (2007), 453-478. Zbl1134.52019MR2352704DOI10.1007/s00454-006-1294-3
- Lam, T., Postnikov, A., Alcoved polytopes II., arXiv:1202.4015v1, 2012. MR2352704
- Litvinov, G. L., Maslov, V. P., Idempotent Mathematics and Mathematical Physics., Proc. Vienna 2003, Amer. Math. Soc. Contemp. Math. 377 (2005). Zbl1069.00011MR2145152
- Litvinov, G. L., Sergeev, S. N., Tropical and Idempotent Mathematics., Proc. Moscow 2007, Amer. Math. Soc. Contemp. Math. 495 (2009). Zbl1172.00019MR2581510
- Papadimitriou, C. H., Steiglitz, K., Combinatorial optimization: algorithms and complexity., Corrected unabrideged republication by Dover, Mineola 1998. Zbl0944.90066MR1637890
- Sergeev, S., Multiorder, Kleene stars and cyclic proyectors in the geometry of max cones., In: Litvinov, G. L., Sergeev, S. N.: Tropical and Idempotent Mathematics. Proc. Moscow 2007, Amer. Math. Soc. Contemp. Math. 495 (2009). MR2581526
- Sergeev, S., 10.1016/j.laa.2006.02.038, Linear Algebra Appl. 421 (2007), 182-201. Zbl1131.15009MR2294335DOI10.1016/j.laa.2006.02.038
- Sergeev, S., Scheneider, H., Butkovič, P., On visualization, subeigenvectors and Kleene stars in max algebra., Linear Algebra Appl. 431 (2009), 2395-2406. MR2563030
- Werner, A., Yu, J., Symmetric alcoved polytopes., arXiv: 1201.4378v1, 2012.
- Yoeli, M., 10.2307/2311149, Amer. Math. Monthly 68 (1961) 552-557. Zbl0115.02103MR0126472DOI10.2307/2311149
- Zimmermann, K., Extremální algebra. (In Czech.), Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV, 46, Prague 1976.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.