Distances on the tropical line determined by two points
Kybernetika (2014)
- Volume: 50, Issue: 3, page 408-435
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPuente, María Jesús de la. "Distances on the tropical line determined by two points." Kybernetika 50.3 (2014): 408-435. <http://eudml.org/doc/261938>.
@article{Puente2014,
abstract = {Let $p^\{\prime \}$ and $q^\{\prime \}$ be points in $\mathbb \{R\}^n$. Write $p^\{\prime \}\sim q^\{\prime \}$ if $p^\{\prime \}-q^\{\prime \}$ is a multiple of $(1,\ldots ,1)$. Two different points $p$ and $q$ in $\mathbb \{R\}^n/\sim $ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p^\{\prime \}$ and $q^\{\prime \}$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname\{d\}(p,pq)$, $\operatorname\{d\}(qp,q)$ and $\operatorname\{d\}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.},
author = {Puente, María Jesús de la},
journal = {Kybernetika},
keywords = {tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph; tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph},
language = {eng},
number = {3},
pages = {408-435},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distances on the tropical line determined by two points},
url = {http://eudml.org/doc/261938},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Puente, María Jesús de la
TI - Distances on the tropical line determined by two points
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 3
SP - 408
EP - 435
AB - Let $p^{\prime }$ and $q^{\prime }$ be points in $\mathbb {R}^n$. Write $p^{\prime }\sim q^{\prime }$ if $p^{\prime }-q^{\prime }$ is a multiple of $(1,\ldots ,1)$. Two different points $p$ and $q$ in $\mathbb {R}^n/\sim $ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p^{\prime }$ and $q^{\prime }$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.
LA - eng
KW - tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph; tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph
UR - http://eudml.org/doc/261938
ER -
References
top- Akian, M., Bapat, R., Gaubert, S., Max-plus algebra., In: Handbook of Linear Algebra (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007, chapter 25.
- Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P., Synchronization and Linearity., John Wiley, Chichester, New York 1992. Zbl0824.93003MR1204266
- Baker, M., Faber, X., 10.1007/s10801-010-0247-3, J. Algebr. Comb. 33 (2011), 349-381. Zbl1215.14060MR2772537DOI10.1007/s10801-010-0247-3
- Billera, L. J., Holmes, S. P., Vogtmann, K., 10.1006/aama.2001.0759, Adv. Appl. Math. 27 (2001), 4, 733-767. Zbl0995.92035MR1867931DOI10.1006/aama.2001.0759
- Brugallé, E., 10.1051/quadrature/2009015, Quadrature 74 (2009), 10-22. Zbl1202.14055DOI10.1051/quadrature/2009015
- Brugallé, E., Some aspects of tropical geometry., Newsletter Europ. Math. Soc. 83 (2012), 23-28. Zbl1285.14069MR2934649
- Butkovič, P., 10.1016/S0166-218X(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. MR1780462DOI10.1016/S0166-218X(00)00212-2
- Butkovič, P., Max-plus Linear Systems: Theory and Algorithms., Springer-Verlag, Berlin 2010. MR2681232
- Chan, M., 10.1007/s10801-012-0369-x, J. Algebr. Comb. 37 (2013), 331-359. Zbl1266.14050MR3011346DOI10.1007/s10801-012-0369-x
- Cohen, G., Gaubert, S., Quadrat, J. P., Duality and separation theorems in idempotent semimodules., Linear Algebra Appl. 379 (2004), 395-422. Zbl1042.46004MR2039751
- Cuninghame-Green, R. A., Minimax algebra., Lecture Notes in Econom and Math. Systems 166, Springer-Verlag, Berlin 1970. Zbl0739.90073MR0580321
- Cuninghame-Green, R. A., Minimax algebra and applications., In: Adv. Imag. Electr. Phys. 90 (P. Hawkes, ed.), Academic Press, New York 1995, pp. 1-121. Zbl0739.90073
- Cuninghame-Green, R.A., Butkovič, P., 10.1016/j.laa.2004.03.022, Linear Algebra Appl. 389 (2004) 107-120. Zbl1059.15001MR2080398DOI10.1016/j.laa.2004.03.022
- Develin, M., Sturmfels, B., Tropical convexity., Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic) (2004), 205-206. Zbl1054.52004MR2054977
- Develin, M., Santos, F., Sturmfels, B., On the rank of a tropical matrix., In: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ. Press, Cambridge 2005, pp. 213-242. Zbl1095.15001MR2178322
- Einsiedler, M., Kapranov, M., Lind, D., Non-archimedean amoebas and tropical varieties., J. Reine Angew. Math. 601 (2006), 139-157. Zbl1115.14051MR2289207
- Gathmann, A., Tropical algebraic geometry., Jahresber. Deutsch. Math.-Verein 108 (2006), 1, 3-32. Zbl1109.14038MR2219706
- Gaubert, S., Plus, Max, Methods and applications of linear algebra.
- Gondran, M., Minoux, M., Graphs, Dioids and Semirings. New Models and Algorithms., Springer-Verlag, Berlin 2008. Zbl1201.16038MR2389137
- (ed.), J. Gunawardena, Idempotency., Publications of the Newton Institute, Cambridge Univ. Press, Cambridge 1998. Zbl1144.68006MR1608365
- Itenberg, I., Brugallé, E., Tessier, B., Géométrie tropicale., Editions de l'École Polythecnique, Paris, 2008.
- Itenberg, I., Mikhalkin, G., Shustin, E., Tropical Algebraic Geometry., Birkhäuser, Basel 2007. Zbl1165.14002MR2292729
- Johnson, M., Kambites, M., 10.1515/advgeom-2013-0034, Adv. in Geom. 14 (2014), 2, 253-276. DOI: 10.1515/advgeom-2013-0034 (http://dx.doi.org/10.1515/advgeom-2013-0034) DOI10.1515/advgeom-2013-0034
- Jiménez, A., Puente, M. J. de la, Six combinatorial classes of maximal convex tropical polyhedra., ArXiv: 1205.4162 (http://arxiv.org/abs/1205.4162), 2012.
- Joyner, D., Ksir, A., Melles, C. G., 10.1007/s13366-011-0049-3, Beitr. Algebra Geom. 53 (2012), 1, 41-56. Zbl1286.14077MR2890362DOI10.1007/s13366-011-0049-3
- Linde, J., Puente, M. J. de la, Matrices commuting with a given normal tropical matrix., ArXiv: 1209.0660v2 (http://arxiv.org/abs/1209.0660), 2014.
- Litvinov, G. L., Maslov, V. P., Idempotent mathematics and mathematical physics., Proc. Vienna 2003, American Mathematical Society, Contemp. Math. 377 (2005). Zbl1069.00011MR2145152
- Litvinov, G. L., Sergeev, S. N., Tropical and idempotent mathematics., Proc. Moscow 2007, American Mathematical Society, Contemp. Math. 495 (2009). Zbl1172.00019MR2581510
- Mikhalkin, G., Tropical geometry and its applications., In: Proc. International Congress of Mathematicians, ICM Madrid 2006, (M. Sanz-Solé et al., eds.), Invited lectures, v. II, EMS Ph., Zurich 2006, pp. 827-852. Zbl1103.14034MR2275625
- Mikhalkin, G., Moduli spaces of rational tropical curves., In: Proc. 13th Gökova Geometry-Topology Conference 2006 (S. Akbulut, T. Onder and R. J. Stern, eds.), International Press, Cambridge, MA 2007, pp. 39-51. Zbl1203.14027MR2404949
- Mikhalkin, G., What is a tropical curve?, Notices AMS 2007, 511-513. MR2305295
- Puente, M. J. de la, On tropical Kleene star matrices and alcoved polytopes., Kybernetika 49 (2013), 6, 897-910. MR3182647
- Richter-Gebert, J., Sturmfels, B., Theobald, T., First steps in tropical geometry., In: [27], pp. 289-317. Zbl1093.14080MR2149011
- Speyer, D., Sturmfels, B., 10.1515/advg.2004.023, Adv. Geom. 4 (2004), 389-411. Zbl1065.14071MR2071813DOI10.1515/advg.2004.023
- Speyer, D., Sturmfels, B., 10.4169/193009809X468760, Math. Mag. 82 (2009), 163-173. Zbl1227.14051MR2522909DOI10.4169/193009809X468760
- Sturmfels, B., Solving systems of polynomial equations., CBMS Regional Conference Series in Math. 97, AMS, Providence 2002. Zbl1101.13040MR1925796
- Sturmfels, B., Yu, J., Classification of six-point metrics., Electron. J. Combinatorics 11 (2004), 44 pp. Zbl1053.52019MR2097310
- Tabera, L. F., 10.1155/IMRN.2005.2373, IMRN 39 (2005), 2373-2389. MR2181355DOI10.1155/IMRN.2005.2373
- Viro, O., Dequantization of real algebraic geometry on logarithmic paper., European Congress of Mathematics, Vol. I (Barcelona 2000), Prog. Math. 201, Birkhäuser, Basel, 2001, pp. 135-146. Zbl1024.14026MR1905317
- Viro, O., On basic concepts of tropical geometry., Proc. Steklov Inst. Math. 273 (2011), 252-282. Zbl1237.14074MR2893551
- Wagneur, E., Finitely generated moduloïds. The existence and unicity problem for bases., In: Analysis and Optimization of Systems, Antibes, 1988 (J. L. Lions and A. Bensoussan, eds.), LNCIS 111, Springer-Verlag, Berlin 1988, pp. 966-976. MR0956331
- Yoeli, M., 10.2307/2311149, Amer. Math. Monthly 68 (1961), 6, 552-557. Zbl0115.02103MR0126472DOI10.2307/2311149
- Zimmermann, K., Extremální algebra., Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV 46 (1976), Prague 1976, in Czech.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.