Noncommutative Valdivia compacta
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 53-72
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCúth, Marek. "Noncommutative Valdivia compacta." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 53-72. <http://eudml.org/doc/260834>.
@article{Cúth2014,
abstract = {We prove some generalizations of results
concerning Valdivia compact spaces
(equivalently spaces with a commutative
retractional skeleton) to the spaces
with a retractional skeleton
(not necessarily commutative).
Namely, we show that the dual unit ball
of a Banach space is Corson provided
the dual unit ball of every equivalent
norm has a retractional skeleton.
Another result to be mentioned is the
following. Having a compact space $K$,
we show that $K$ is Corson if and only
if every continuous image of $K$ has
a retractional skeleton. We also present
some open problems in this area.},
author = {Cúth, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retractional skeleton; projectional skeleton; Valdivia compacta; Plichko spaces; retractional skeleton; projectional skeleton; Valdivia compacta; Plichko spaces},
language = {eng},
number = {1},
pages = {53-72},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Noncommutative Valdivia compacta},
url = {http://eudml.org/doc/260834},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Cúth, Marek
TI - Noncommutative Valdivia compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 53
EP - 72
AB - We prove some generalizations of results
concerning Valdivia compact spaces
(equivalently spaces with a commutative
retractional skeleton) to the spaces
with a retractional skeleton
(not necessarily commutative).
Namely, we show that the dual unit ball
of a Banach space is Corson provided
the dual unit ball of every equivalent
norm has a retractional skeleton.
Another result to be mentioned is the
following. Having a compact space $K$,
we show that $K$ is Corson if and only
if every continuous image of $K$ has
a retractional skeleton. We also present
some open problems in this area.
LA - eng
KW - retractional skeleton; projectional skeleton; Valdivia compacta; Plichko spaces; retractional skeleton; projectional skeleton; Valdivia compacta; Plichko spaces
UR - http://eudml.org/doc/260834
ER -
References
top- Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
- Cúth M., 10.1016/j.jmaa.2013.09.020, J. Math. Anal. Appl. 411 (2014), 19–29; DOI: 10.1016/j.jmaa.2013.09.020. MR3118464DOI10.1016/j.jmaa.2013.09.020
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, New York, 1993. Zbl0782.46019MR1211634
- Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Hájek P., Montesinos V., Vanderwerff J., Zizler V., Biorthogonal Systems in Banach Spaces, CMS Books in Mathematics, 26, Springer, New York, 2008. Zbl1136.46001MR2359536
- Kalenda O., Valdivia compacta and subspaces of spaces, Extracta Math. 14 (1999), no. 3, 355–371. MR1759476
- Kalenda O., Continuous images and other topological properties of Valdivia compacta, Fund. Math. 162 (1999), no. 2, 181–192. Zbl0989.54019MR1734916
- Kalenda O., Embedding the ordinal segment into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783. MR1756552
- Kalenda O., Valdivia compacta and equivalent norms, Studia Math. 138 (2000), 179–191. Zbl1073.46009MR1749079
- Kalenda O., A characterization of Valdivia compact spaces, Collect. Math. 51 (2000), no. 1, 59–81. Zbl0949.46004MR1757850
- Kalenda O., :, Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15 (2000), no. 1, 1–85. MR1792980
- Kalenda O.F.K., 10.4064/cm92-2-3, Colloq. Math. 92 (2002), no. 2, 179–187. Zbl1029.46006MR1899436DOI10.4064/cm92-2-3
- Kubiś W., Michalewski H., 10.1016/j.topol.2005.09.010, Topology Appl. 153 (2006), 2560–2573. Zbl1138.54024MR2243734DOI10.1016/j.topol.2005.09.010
- Banakh T., Kubiś W., Spaces of continuous functions over Dugundji compacta, preprint, arXiv:math/0610795v2, 2008.
- Kubiś W., 10.1016/j.jmaa.2008.07.006, J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. Zbl1166.46008MR2474810DOI10.1016/j.jmaa.2008.07.006
- Kakol J., Kubiś W., López-Pellicer M., 10.1007/978-1-4614-0529-0, Developments in Mathematics, 24, Springer, New York, 2011. MR2953769DOI10.1007/978-1-4614-0529-0
- Kunen K., Set Theory, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983. Zbl0960.03033MR0756630
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.