Embedding of the ordinal segment [ 0 , ω 1 ] into continuous images of Valdivia compacta

Ondřej F. K. Kalenda

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 777-783
  • ISSN: 0010-2628

Abstract

top
We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment [ 0 , ω 1 ] . This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.

How to cite

top

Kalenda, Ondřej F. K.. "Embedding of the ordinal segment $[0,\omega _1]$ into continuous images of Valdivia compacta." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 777-783. <http://eudml.org/doc/248429>.

@article{Kalenda1999,
abstract = {We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment $[0,\omega _1]$. This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.},
author = {Kalenda, Ondřej F. K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Corson compact space; Valdivia compact space; continuous image; ordinal segment; Corson compact space; Valdivia compact space; continuous image; ordinal segment},
language = {eng},
number = {4},
pages = {777-783},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Embedding of the ordinal segment $[0,\omega _1]$ into continuous images of Valdivia compacta},
url = {http://eudml.org/doc/248429},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Kalenda, Ondřej F. K.
TI - Embedding of the ordinal segment $[0,\omega _1]$ into continuous images of Valdivia compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 777
EP - 783
AB - We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment $[0,\omega _1]$. This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.
LA - eng
KW - Corson compact space; Valdivia compact space; continuous image; ordinal segment; Corson compact space; Valdivia compact space; continuous image; ordinal segment
UR - http://eudml.org/doc/248429
ER -

References

top
  1. Some applications of projective resolutions of identity, Proc. London Math. Soc. 67 1 (1993), 183-199. (1993) Zbl0798.46008MR1218125
  2. Fabian M., Gâteaux differentiability of convex functions and topology: weak Asplund spaces, Wiley-Interscience, New York (1997), 180. (1997) Zbl0883.46011MR1461271
  3. Fabian M., Godefroy G., Zizler V., A note on Asplund generated Banach spaces, Bull. Acad. Polon. Sci. 47 2 (1999 to appear). (1999 to appear) Zbl0946.46016MR1711819
  4. Godefroy G., Talagrand M., Espaces de Banach représentables, Israel J. Math. 41 4 (1982), 321-330. (1982) Zbl0498.46016MR0657864
  5. Gul'ko S.P., Properties of sets that lie in Σ -products (in Russian), Dokl. Akad. Nauk SSSR 237 (1977), 3 505-508. (1977) MR0461410
  6. Kalenda O., Stegall compact spaces which are not fragmentable, Topology Appl. 96 2 (1999), 121-132. (1999) Zbl0991.54030MR1702306
  7. Kalenda O., Continuous images and other topological properties of Valdivia compacta, Fund. Math., to appear. Zbl0989.54019MR1734916
  8. Kalenda O., A characterization of Valdivia compact spaces, Collectanea Math., to appear. Zbl0949.46004MR1757850
  9. Kalenda O., Valdivia compacta and equivalent norms, preprint. Zbl1073.46009MR1749079
  10. Kalenda O., Valdivia compacta and subspaces of C ( K ) spaces, preprint KMA-1999-02, Charles University, Prague. Zbl0983.46020MR1759476
  11. Noble N., The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187-198. (1970) Zbl0229.54028MR0257987
  12. Valdivia M., Projective resolutions of the identity in C ( K ) spaces, Archiv der Math. 54 (1990), 493-498. (1990) MR1049205
  13. Valdivia M., Simultaneous resolutions of the identity operator in normed spaces, Collectanea Math. 42 3 (1991), 265-285. (1991) Zbl0788.47024MR1203185
  14. Valdivia M., On certain compact topological spaces, Revista Matemática de la Universidad Complutense de Madrid 10 1 (1997), 81-84. (1997) Zbl0870.54025MR1452564

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.