Artinian cofinite modules over complete Noetherian local rings
Behrouz Sadeghi; Kamal Bahmanpour; Jafar A'zami
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 877-885
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSadeghi, Behrouz, Bahmanpour, Kamal, and A'zami, Jafar. "Artinian cofinite modules over complete Noetherian local rings." Czechoslovak Mathematical Journal 63.4 (2013): 877-885. <http://eudml.org/doc/260836>.
@article{Sadeghi2013,
abstract = {Let $(R,\mathfrak \{m\})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak \{p\}$ is a prime ideal of $R$ such that $\dim R/\mathfrak \{p\}=1$ and $(0:_M\mathfrak \{p\})$ is not finitely generated and for each $i\ge 2$ the $R$-module $\{\rm Ext\}^i_R(M,R/\mathfrak \{p\})$ is of finite length, then the $R$-module $\{\rm Ext\}^1_R(M,R/\mathfrak \{p\})$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname\{Supp\}(N)\subseteq V(I)$ and for all integers $i\ge 0$, the $R$-modules $\{\rm Ext\}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname\{Supp\}(N)\subseteq V(I)$ and for all integers $i\ge 0$, the $R$-modules $\{\rm Ext\}^i_R(M,N)$ are of finite length.},
author = {Sadeghi, Behrouz, Bahmanpour, Kamal, A'zami, Jafar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Artinian module; cofinite module; Krull dimension; local cohomology; Artinian module; cofinite module; local cohomology},
language = {eng},
number = {4},
pages = {877-885},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Artinian cofinite modules over complete Noetherian local rings},
url = {http://eudml.org/doc/260836},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Sadeghi, Behrouz
AU - Bahmanpour, Kamal
AU - A'zami, Jafar
TI - Artinian cofinite modules over complete Noetherian local rings
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 877
EP - 885
AB - Let $(R,\mathfrak {m})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak {p}$ is a prime ideal of $R$ such that $\dim R/\mathfrak {p}=1$ and $(0:_M\mathfrak {p})$ is not finitely generated and for each $i\ge 2$ the $R$-module ${\rm Ext}^i_R(M,R/\mathfrak {p})$ is of finite length, then the $R$-module ${\rm Ext}^1_R(M,R/\mathfrak {p})$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname{Supp}(N)\subseteq V(I)$ and for all integers $i\ge 0$, the $R$-modules ${\rm Ext}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname{Supp}(N)\subseteq V(I)$ and for all integers $i\ge 0$, the $R$-modules ${\rm Ext}^i_R(M,N)$ are of finite length.
LA - eng
KW - Artinian module; cofinite module; Krull dimension; local cohomology; Artinian module; cofinite module; local cohomology
UR - http://eudml.org/doc/260836
ER -
References
top- Abazari, R., Bahmanpour, K., 10.1016/j.jalgebra.2010.11.016, J. Algebra 330 (2011), 507-516. (2011) Zbl1227.13010MR2774642DOI10.1016/j.jalgebra.2010.11.016
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra. 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
- Bahmanpour, K., Naghipour, R., Sedghi, M., On the category of cofinite modules which is Abelian, (to appear) in Proc. Am. Math. Soc.
- Brodmann, M. P., Sharp, R. Y., Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627
- Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
- Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
- Grothendieck, A., Local Cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne, Lecture Notes in Mathematics 41 Springer, Berlin (1967). (1967) Zbl0185.49202MR0224620
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Irani, Y., Bahmanpour, K., 10.4134/BKMS.2013.50.2.649, Bull. Korean Math. Soc. 50 (2013), 649-657. (2013) MR3137709DOI10.4134/BKMS.2013.50.2.649
- Kawasaki, K.-I., 10.1090/S0002-9939-96-03399-0, Proc. Am. Math. Soc. 124 (1996), 3275-3279. (1996) Zbl0860.13011MR1328354DOI10.1090/S0002-9939-96-03399-0
- Kawasaki, K.-I., 10.1007/s00209-010-0751-0, Math. Z. 269 (2011), 587-608. (2011) Zbl1228.13020MR2836085DOI10.1007/s00209-010-0751-0
- Matsumura, H., Commutative Ring Theory. Transl. from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
- Yoshida, K. I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.