Su una classe di operatori differenziali ipoellittici del second’ordine

Andrea Pascucci

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-A, Issue: 1S, page 157-160
  • ISSN: 0392-4041

How to cite

top

Pascucci, Andrea. "Su una classe di operatori differenziali ipoellittici del second’ordine." Bollettino dell'Unione Matematica Italiana 3-A.1S (2000): 157-160. <http://eudml.org/doc/260878>.

@article{Pascucci2000,
abstract = {},
author = {Pascucci, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1S},
pages = {157-160},
publisher = {Unione Matematica Italiana},
title = {Su una classe di operatori differenziali ipoellittici del second’ordine},
url = {http://eudml.org/doc/260878},
volume = {3-A},
year = {2000},
}

TY - JOUR
AU - Pascucci, Andrea
TI - Su una classe di operatori differenziali ipoellittici del second’ordine
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/4//
PB - Unione Matematica Italiana
VL - 3-A
IS - 1S
SP - 157
EP - 160
AB -
LA - ita
UR - http://eudml.org/doc/260878
ER -

References

top
  1. BONY, J. M., Principe du maximum, inègalitè de Harnack et unicitè du problème de Cauchy pour les opèrateurs elliptiques dègènèrès, Ann. Inst. Fourier, Grenoble, 19-1 (1969), 277-304. Zbl0176.09703MR262881
  2. FUJITA, H., On the blowing-up of solutions of the Cauchy problem for u t = Δ u + u 1 + α , J. Fac. Sci. Univ. Tokyo, Sect., I-13 (1966), 109-124. Zbl0163.34002MR214914
  3. GAROFALO, N., LANCONELLI, E., Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann., 283 (1989), 211-239. Zbl0638.35003MR980595DOI10.1007/BF01446432
  4. GAROFALO, N., SEGALA, F., Estimates for the fundamental solution and Wiener’s criterion for the heat equation on the Heisenberg group, Indiana U. Math. J., 39-4 (1990), 1155-1196. Zbl0808.35046MR1087188DOI10.1512/iumj.1990.39.39053
  5. LANCONELLI, E., PASCUCCI, A., Superparabolic functions related to second order hypoelliptic operators, apparirà su Potential Analysis. Zbl0940.35054
  6. LANCONELLI, E., PASCUCCI, A., On the fundamental solution for hypoelliptic second order partial differential operators with non-negative characteristic form, apparirà su Ricerche di Matematica. Zbl0965.35005
  7. LITTMAN, W., Generalized subharmonic functions: monotonic approximations and an improved maximum principle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., III Ser., 17 (1963), 207-222. Zbl0123.29104MR177186
  8. PASCUCCI, A., Fujita type results for a class of degenerate parabolic operators, apparirà su Advances Diff. Eq. Zbl0978.35024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.