Su una classe di operatori differenziali ipoellittici del second’ordine
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-A, Issue: 1S, page 157-160
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BONY, J. M., Principe du maximum, inègalitè de Harnack et unicitè du problème de Cauchy pour les opèrateurs elliptiques dègènèrès, Ann. Inst. Fourier, Grenoble, 19-1 (1969), 277-304. Zbl0176.09703MR262881
- FUJITA, H., On the blowing-up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo, Sect., I-13 (1966), 109-124. Zbl0163.34002MR214914
- GAROFALO, N., LANCONELLI, E., Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann., 283 (1989), 211-239. Zbl0638.35003MR980595DOI10.1007/BF01446432
- GAROFALO, N., SEGALA, F., Estimates for the fundamental solution and Wiener’s criterion for the heat equation on the Heisenberg group, Indiana U. Math. J., 39-4 (1990), 1155-1196. Zbl0808.35046MR1087188DOI10.1512/iumj.1990.39.39053
- LANCONELLI, E., PASCUCCI, A., Superparabolic functions related to second order hypoelliptic operators, apparirà su Potential Analysis. Zbl0940.35054
- LANCONELLI, E., PASCUCCI, A., On the fundamental solution for hypoelliptic second order partial differential operators with non-negative characteristic form, apparirà su Ricerche di Matematica. Zbl0965.35005
- LITTMAN, W., Generalized subharmonic functions: monotonic approximations and an improved maximum principle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., III Ser., 17 (1963), 207-222. Zbl0123.29104MR177186
- PASCUCCI, A., Fujita type results for a class of degenerate parabolic operators, apparirà su Advances Diff. Eq. Zbl0978.35024