Stability of vibrations for some Kirchhoff equation with dissipation

Prasanta Kumar Nandi; Ganesh Chandra Gorain; Samarjit Kar

Applications of Mathematics (2014)

  • Volume: 59, Issue: 2, page 205-215
  • ISSN: 0862-7940

Abstract

top
In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval [ 0 , T ] with a tolerance level γ . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force f . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant.

How to cite

top

Nandi, Prasanta Kumar, Gorain, Ganesh Chandra, and Kar, Samarjit. "Stability of vibrations for some Kirchhoff equation with dissipation." Applications of Mathematics 59.2 (2014): 205-215. <http://eudml.org/doc/261075>.

@article{Nandi2014,
abstract = {In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval $[0,T]$ with a tolerance level $\gamma $. The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force $f$. After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant.},
author = {Nandi, Prasanta Kumar, Gorain, Ganesh Chandra, Kar, Samarjit},
journal = {Applications of Mathematics},
keywords = {Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate; Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate},
language = {eng},
number = {2},
pages = {205-215},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of vibrations for some Kirchhoff equation with dissipation},
url = {http://eudml.org/doc/261075},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Nandi, Prasanta Kumar
AU - Gorain, Ganesh Chandra
AU - Kar, Samarjit
TI - Stability of vibrations for some Kirchhoff equation with dissipation
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 205
EP - 215
AB - In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval $[0,T]$ with a tolerance level $\gamma $. The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force $f$. After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant.
LA - eng
KW - Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate; Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate
UR - http://eudml.org/doc/261075
ER -

References

top
  1. Aassila, M., Benaissa, A., Global existence and asymptotic behavior of solutions of mildly degenerate Kirchhoff equations with nonlinear dissipative term, Funkc. Ekvacioj, Ser. Int. 44 (2001), 309-333 French. (2001) Zbl1145.35432MR1865394
  2. Autuori, G., Pucci, P., Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ. 56 (2011), 715-753. (2011) Zbl1230.35018MR2832211
  3. Autuori, G., Pucci, P., 10.1080/00036811.2010.483433, Appl. Anal. 90 (2011), 493-514. (2011) Zbl1223.35051MR2780908DOI10.1080/00036811.2010.483433
  4. Autuori, G., Pucci, P., Salvatori, M. C., 10.1016/j.jmaa.2008.04.066, J. Math. Anal. Appl. 352 (2009), 149-165. (2009) Zbl1175.35013MR2499894DOI10.1016/j.jmaa.2008.04.066
  5. Autuori, G., Pucci, P., Salvatori, M. C., 10.1016/j.nonrwa.2007.11.011, Nonlinear Anal., Real World Appl. 10 (2009), 889-909. (2009) Zbl1167.35314MR2474268DOI10.1016/j.nonrwa.2007.11.011
  6. D'Ancona, P., Spagnolo, S., 10.1002/cpa.3160470705, Commun. Pure Appl. Math. 47 (1994), 1005-1029. (1994) Zbl0807.35093MR1283880DOI10.1002/cpa.3160470705
  7. Gorain, G. C., 10.1016/j.jmaa.2005.06.031, J. Math. Anal. Appl. 319 (2006), 635-650. (2006) MR2227928DOI10.1016/j.jmaa.2005.06.031
  8. Gorain, G. C., 10.1016/j.amc.2005.11.003, Appl. Math. Comput. 177 (2006), 235-242. (2006) Zbl1098.74024MR2234515DOI10.1016/j.amc.2005.11.003
  9. Komornik, V., Zuazua, E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., IX. Sér. 69 (1990), 33-54. (1990) Zbl0636.93064MR1054123
  10. Lasiecka, I., Ong, J., 10.1080/03605309908821495, Commun. Partial Differ. Equations 24 (1999), 2069-2107. (1999) Zbl0936.35031MR1720766DOI10.1080/03605309908821495
  11. Menzala, G. P., 10.1016/0362-546X(79)90090-7, Nonlinear Anal., Theory Methods Appl. 3 (1979), 613-627. (1979) Zbl0419.35062MR0541872DOI10.1016/0362-546X(79)90090-7
  12. Mitrinović, D. S., Pečarić, J. E., Fink, A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). (1991) Zbl0744.26011MR1190927
  13. Nandi, P. K., Gorain, G. C., Kar, S., 10.4236/am.2011.26087, Appl. Math. (Irvine) 2 (2011), 661-665. (2011) MR2910175DOI10.4236/am.2011.26087
  14. Narasimha, R., 10.1016/0022-460X(68)90200-9, J. Sound Vib. 8 (1968), 134-146. (1968) Zbl0164.26701DOI10.1016/0022-460X(68)90200-9
  15. Nayfeh, A. H., Mook, D. T., Nonlinear Oscillations, Pure and Applied Mathematics. A Wiley-Interscience Publication John Wiley & Sons, New York (1979). (1979) Zbl0418.70001MR0549322
  16. Newman, W. G., 10.1006/jmaa.1995.1198, J. Math. Anal. Appl. 192 (1995), 689-704. (1995) Zbl0837.35095MR1336472DOI10.1006/jmaa.1995.1198
  17. Nishihara, K., 10.3836/tjm/1270151737, Tokyo J. Math. 7 (1984), 437-459. (1984) Zbl0586.35059MR0776949DOI10.3836/tjm/1270151737
  18. Nishihara, K., Yamada, Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkc. Ekvacioj, Ser. Int. 33 (1990), 151-159. (1990) Zbl0715.35053MR1065473
  19. Ono, K., 10.1006/jdeq.1997.3263, J. Differ. Equations 137 (1997), 273-301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
  20. Ono, K., Nishihara, K., On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation, Adv. Math. Sci. Appl. 5 (1995), 457-476. (1995) Zbl0842.45005MR1361000
  21. Shahruz, S. M., 10.1109/9.533679, IEEE Trans. Autom. Control 41 (1996), 1179-1182. (1996) Zbl0863.93076MR1407204DOI10.1109/9.533679
  22. Yamazaki, T., 10.1002/mma.530, Math. Methods Appl. Sci. 27 (2004), 1893-1916. (2004) Zbl1072.35559MR2092828DOI10.1002/mma.530
  23. Yamazaki, T., 10.1016/j.jde.2004.10.012, J. Differ. Equations 210 (2005), 290-316. (2005) Zbl1062.35045MR2119986DOI10.1016/j.jde.2004.10.012
  24. Ye, Y., 10.4236/am.2010.16070, Applied Mathematics 1 (2010), 529-533. (2010) DOI10.4236/am.2010.16070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.