Stability of vibrations for some Kirchhoff equation with dissipation
Prasanta Kumar Nandi; Ganesh Chandra Gorain; Samarjit Kar
Applications of Mathematics (2014)
- Volume: 59, Issue: 2, page 205-215
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNandi, Prasanta Kumar, Gorain, Ganesh Chandra, and Kar, Samarjit. "Stability of vibrations for some Kirchhoff equation with dissipation." Applications of Mathematics 59.2 (2014): 205-215. <http://eudml.org/doc/261075>.
@article{Nandi2014,
abstract = {In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval $[0,T]$ with a tolerance level $\gamma $. The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force $f$. After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant.},
author = {Nandi, Prasanta Kumar, Gorain, Ganesh Chandra, Kar, Samarjit},
journal = {Applications of Mathematics},
keywords = {Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate; Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate},
language = {eng},
number = {2},
pages = {205-215},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of vibrations for some Kirchhoff equation with dissipation},
url = {http://eudml.org/doc/261075},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Nandi, Prasanta Kumar
AU - Gorain, Ganesh Chandra
AU - Kar, Samarjit
TI - Stability of vibrations for some Kirchhoff equation with dissipation
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 205
EP - 215
AB - In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval $[0,T]$ with a tolerance level $\gamma $. The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force $f$. After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant.
LA - eng
KW - Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate; Kirchhoff equation; dissipation; vibration; stabilization; energy decay estimate
UR - http://eudml.org/doc/261075
ER -
References
top- Aassila, M., Benaissa, A., Global existence and asymptotic behavior of solutions of mildly degenerate Kirchhoff equations with nonlinear dissipative term, Funkc. Ekvacioj, Ser. Int. 44 (2001), 309-333 French. (2001) Zbl1145.35432MR1865394
- Autuori, G., Pucci, P., Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ. 56 (2011), 715-753. (2011) Zbl1230.35018MR2832211
- Autuori, G., Pucci, P., 10.1080/00036811.2010.483433, Appl. Anal. 90 (2011), 493-514. (2011) Zbl1223.35051MR2780908DOI10.1080/00036811.2010.483433
- Autuori, G., Pucci, P., Salvatori, M. C., 10.1016/j.jmaa.2008.04.066, J. Math. Anal. Appl. 352 (2009), 149-165. (2009) Zbl1175.35013MR2499894DOI10.1016/j.jmaa.2008.04.066
- Autuori, G., Pucci, P., Salvatori, M. C., 10.1016/j.nonrwa.2007.11.011, Nonlinear Anal., Real World Appl. 10 (2009), 889-909. (2009) Zbl1167.35314MR2474268DOI10.1016/j.nonrwa.2007.11.011
- D'Ancona, P., Spagnolo, S., 10.1002/cpa.3160470705, Commun. Pure Appl. Math. 47 (1994), 1005-1029. (1994) Zbl0807.35093MR1283880DOI10.1002/cpa.3160470705
- Gorain, G. C., 10.1016/j.jmaa.2005.06.031, J. Math. Anal. Appl. 319 (2006), 635-650. (2006) MR2227928DOI10.1016/j.jmaa.2005.06.031
- Gorain, G. C., 10.1016/j.amc.2005.11.003, Appl. Math. Comput. 177 (2006), 235-242. (2006) Zbl1098.74024MR2234515DOI10.1016/j.amc.2005.11.003
- Komornik, V., Zuazua, E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., IX. Sér. 69 (1990), 33-54. (1990) Zbl0636.93064MR1054123
- Lasiecka, I., Ong, J., 10.1080/03605309908821495, Commun. Partial Differ. Equations 24 (1999), 2069-2107. (1999) Zbl0936.35031MR1720766DOI10.1080/03605309908821495
- Menzala, G. P., 10.1016/0362-546X(79)90090-7, Nonlinear Anal., Theory Methods Appl. 3 (1979), 613-627. (1979) Zbl0419.35062MR0541872DOI10.1016/0362-546X(79)90090-7
- Mitrinović, D. S., Pečarić, J. E., Fink, A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). (1991) Zbl0744.26011MR1190927
- Nandi, P. K., Gorain, G. C., Kar, S., 10.4236/am.2011.26087, Appl. Math. (Irvine) 2 (2011), 661-665. (2011) MR2910175DOI10.4236/am.2011.26087
- Narasimha, R., 10.1016/0022-460X(68)90200-9, J. Sound Vib. 8 (1968), 134-146. (1968) Zbl0164.26701DOI10.1016/0022-460X(68)90200-9
- Nayfeh, A. H., Mook, D. T., Nonlinear Oscillations, Pure and Applied Mathematics. A Wiley-Interscience Publication John Wiley & Sons, New York (1979). (1979) Zbl0418.70001MR0549322
- Newman, W. G., 10.1006/jmaa.1995.1198, J. Math. Anal. Appl. 192 (1995), 689-704. (1995) Zbl0837.35095MR1336472DOI10.1006/jmaa.1995.1198
- Nishihara, K., 10.3836/tjm/1270151737, Tokyo J. Math. 7 (1984), 437-459. (1984) Zbl0586.35059MR0776949DOI10.3836/tjm/1270151737
- Nishihara, K., Yamada, Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkc. Ekvacioj, Ser. Int. 33 (1990), 151-159. (1990) Zbl0715.35053MR1065473
- Ono, K., 10.1006/jdeq.1997.3263, J. Differ. Equations 137 (1997), 273-301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
- Ono, K., Nishihara, K., On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation, Adv. Math. Sci. Appl. 5 (1995), 457-476. (1995) Zbl0842.45005MR1361000
- Shahruz, S. M., 10.1109/9.533679, IEEE Trans. Autom. Control 41 (1996), 1179-1182. (1996) Zbl0863.93076MR1407204DOI10.1109/9.533679
- Yamazaki, T., 10.1002/mma.530, Math. Methods Appl. Sci. 27 (2004), 1893-1916. (2004) Zbl1072.35559MR2092828DOI10.1002/mma.530
- Yamazaki, T., 10.1016/j.jde.2004.10.012, J. Differ. Equations 210 (2005), 290-316. (2005) Zbl1062.35045MR2119986DOI10.1016/j.jde.2004.10.012
- Ye, Y., 10.4236/am.2010.16070, Applied Mathematics 1 (2010), 529-533. (2010) DOI10.4236/am.2010.16070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.