The search session has expired. Please query the service again.
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...
In this paper we study asymptotic behaviour of distributed parameter systems governed
by partial differential equations (abbreviated to PDE). We first review some recently developed results
on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals
we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE
systems. Then we apply the result to establish exponential stability of various chemical engineering
processes...
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...
We discuss a general framework of monotone skew-product semiflows under a connected group action. In a prior work, a compact connected group -action has been considered on a strongly monotone skew-product semiflow. Here we relax the strong monotonicity and compactness requirements, and establish a theory concerning symmetry or monotonicity properties of uniformly stable 1-cover minimal sets. We then apply this theory to show rotational symmetry of certain stable entire solutions for a class of...
Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the...
This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...
This paper is devoted to the study of a coupled system which consists of
a wave equation and a heat equation coupled through a transmission condition
along a steady interface. This system is a linearized model for
fluid-structure interaction introduced by Rauch, Zhang and Zuazua
for a simple transmission condition and by Zhang and Zuazua for a
natural transmission condition.
Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we
complete the results obtained...
The objective in these notes is to present an approach to dynamical systems in infinite dimensions. It does not seem reasonable to make a comparison of all of the orbits of the dynamics of two systems on non locally compact infinite dimensional spaces. Therefore, we choose to compare them on the set of globally defined bounded solutions. Fundamental problems are posed and several important results are stated when this set is compact. We then give results on the dynamical system which will ensure...
In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval with a tolerance level . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant....
We consider a damped abstract second order evolution equation with an additional vanishing damping of Kelvin–Voigt type. Unlike the earlier work by Zuazua and Ervedoza, we do not assume the operator defining the main damping to be bounded. First, using a constructive frequency domain method coupled with a decomposition of frequencies and the introduction of a new variable, we show that if the limit system is exponentially stable, then this evolutionary system is uniformly − with respect to the calibration...
Currently displaying 1 –
15 of
15