Generalized Schauder frames
Archivum Mathematicum (2014)
- Volume: 050, Issue: 1, page 39-49
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKaushik, S.K., and Sharma, Shalu. "Generalized Schauder frames." Archivum Mathematicum 050.1 (2014): 39-49. <http://eudml.org/doc/261076>.
@article{Kaushik2014,
abstract = {Schauder frames were introduced by Han and Larson [9] and further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this paper, we have introduced approximative Schauder frames as a generalization of Schauder frames and a characterization for approximative Schauder frames in Banach spaces in terms of sequence of non-zero endomorphism of finite rank has been given. Further, weak* and weak approximative Schauder frames in Banach spaces have been defined. Finally, it has been proved that $E$ has a weak approximative Schauder frame if and only if $E^*$ has a weak* approximative Schauder frame.},
author = {Kaushik, S.K., Sharma, Shalu},
journal = {Archivum Mathematicum},
keywords = {frame; Schauder frames; frame; Schauder frame},
language = {eng},
number = {1},
pages = {39-49},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Generalized Schauder frames},
url = {http://eudml.org/doc/261076},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Kaushik, S.K.
AU - Sharma, Shalu
TI - Generalized Schauder frames
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 1
SP - 39
EP - 49
AB - Schauder frames were introduced by Han and Larson [9] and further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this paper, we have introduced approximative Schauder frames as a generalization of Schauder frames and a characterization for approximative Schauder frames in Banach spaces in terms of sequence of non-zero endomorphism of finite rank has been given. Further, weak* and weak approximative Schauder frames in Banach spaces have been defined. Finally, it has been proved that $E$ has a weak approximative Schauder frame if and only if $E^*$ has a weak* approximative Schauder frame.
LA - eng
KW - frame; Schauder frames; frame; Schauder frame
UR - http://eudml.org/doc/261076
ER -
References
top- Casazza, P.G., The art of frame theory, Taiwanese J. Math. 4 (2) (2000), 129–201. (2000) Zbl0966.42022MR1757401
- Casazza, P.G., Dilworth, S.J., Odell, E., Schlumprecht, Th., Zsak, A., 10.1016/j.jmaa.2008.06.055, J. Math.Anal. Appl. 348 (2008), 66–86. (2008) MR2449328DOI10.1016/j.jmaa.2008.06.055
- Casazza, P.G., Han, D., Larson, D.R., 10.1090/conm/247/03801, Contemp. Math. 247 (1999), 149–182. (1999) Zbl0947.46010MR1738089DOI10.1090/conm/247/03801
- Christensen, O., Frames and bases (An introductory course), Birkhäuser, Boston, 2008. (2008) Zbl1152.42001MR2428338
- Daubechies, I., Grossmann, A., Meyer, Y., 10.1063/1.527388, J. Math. Phys. 27 (1986), 1271–1283. (1986) MR0836025DOI10.1063/1.527388
- Duffin, R.J., Schaeffer, A.C., 10.1090/S0002-9947-1952-0047179-6, Trans. Amer. Math. Soc. 72 (1952), 341–366. (1952) MR0047179DOI10.1090/S0002-9947-1952-0047179-6
- Feichtinger, H.G., Grochenig, K., A unified approach to atomic decompostion via integrable group representations, Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 429–457. (1988) MR0942257
- Gabor, D., Theory of communications, J. Inst. Elec. Engg. 93 (1946), 429–457. (1946)
- Han, D., Larson, D.R., Frames, bases and group representations, Mem. Amer. Math. Soc. 147 697) (2000), 1–91. (2000) Zbl0971.42023MR1686653
- Kaushik, S.K., Sharma, S.K., Poumai, K.T., On Schauder frames in conjugate Banach spaces, J. Math. 2013 (2013), 4, Article ID 318659. (2013) Zbl1277.46009MR3096803
- Liu, R., 10.1016/j.jmaa.2009.11.001, J. Math. Anal. Appl. 365 (1), 385–398. Zbl1195.46012MR2585111DOI10.1016/j.jmaa.2009.11.001
- Liu, R., Zheng, B., 10.1007/s00041-010-9126-5, J. Fourier Anal. Appl. 16 (2010), 791–803. (2010) Zbl1210.46012MR2673710DOI10.1007/s00041-010-9126-5
- Singer, I., Bases in Banach spaces II, Springer, New York, 1981. (1981) Zbl0467.46020MR0610799
- Vashisht, L.K., On Schauder frames, TWMS J. Appl. Eng. Math. 2 (1) (2012), 116–120. (2012) Zbl1274.42080MR3068866
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.