On the existence of non-linear frames
Shah Jahan; Varinder Kumar; S.K. Kaushik
Archivum Mathematicum (2017)
- Volume: 053, Issue: 2, page 101-109
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJahan, Shah, Kumar, Varinder, and Kaushik, S.K.. "On the existence of non-linear frames." Archivum Mathematicum 053.2 (2017): 101-109. <http://eudml.org/doc/288212>.
@article{Jahan2017,
abstract = {A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal \{X\}$ is a Banach space such that $\mathcal \{X^*\}$ has a SRBF, then $\mathcal \{X\}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal \{X\}$ has an approximative Schauder frame, then $\mathcal \{X^*\}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.},
author = {Jahan, Shah, Kumar, Varinder, Kaushik, S.K.},
journal = {Archivum Mathematicum},
keywords = {Banach frames; retro Banach frames; approximative Schauder frames},
language = {eng},
number = {2},
pages = {101-109},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the existence of non-linear frames},
url = {http://eudml.org/doc/288212},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Jahan, Shah
AU - Kumar, Varinder
AU - Kaushik, S.K.
TI - On the existence of non-linear frames
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 101
EP - 109
AB - A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal {X}$ is a Banach space such that $\mathcal {X^*}$ has a SRBF, then $\mathcal {X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal {X}$ has an approximative Schauder frame, then $\mathcal {X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
LA - eng
KW - Banach frames; retro Banach frames; approximative Schauder frames
UR - http://eudml.org/doc/288212
ER -
References
top- Casazza, P.G., 10.11650/twjm/1500407227, Taiwanese J. Math. 4 (2000), 129–201. (2000) Zbl0966.42022MR1757401DOI10.11650/twjm/1500407227
- Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht,, Zsak, A., 10.1016/j.jmaa.2008.06.055, J. Math. Anal. Appl. 348 (2008), 66–86. (2008) MR2449328DOI10.1016/j.jmaa.2008.06.055
- Casazza, P.G., Han, D., Larson, D., 10.1090/conm/247/03801, Contemp. Math. 247 (1999), 149–181. (1999) Zbl0947.46010MR1738089DOI10.1090/conm/247/03801
- Christensen, O., Frames and bases (An introductory course), Birkhäuser, Boston, 2008. (2008) Zbl1152.42001MR2428338
- Duffin, R., Schaeffer, A., 10.1090/S0002-9947-1952-0047179-6, Trans. Amer. Math. Soc. 72 (1952), 341–366. (1952) Zbl0049.32401MR0047179DOI10.1090/S0002-9947-1952-0047179-6
- Feichtinger, H.G., Grochenig, K.H., A unified approach to atomic decompositions via integrable group representations, Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73. (1988) Zbl0658.22007MR0942257
- Grochenig, K.H., 10.1007/BF01321715, Monatsh. Math. 112 (1991), 1–41. (1991) Zbl0736.42022MR1122103DOI10.1007/BF01321715
- Han, D., Larson, D.R., Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), 1–91. (2000) Zbl0971.42023MR1686653
- Jain, P.K., Kaushik, S.K., Vashisht, L.K., 10.4171/ZAA/1217, Z. Anal. Anwendungen 23 (2004), 713–720. (2004) Zbl1059.42024MR2110399DOI10.4171/ZAA/1217
- Kaushik, S.K., Sharma, S.K., On approximative atomic decompositions in Banach spaces, Communications in Mathematics and Applications 3 (3) (2012), 293–301. (2012)
- Kaushik, S.K., Sharma, S.K., 10.5817/AM2014-1-39, Arch. Math. (Brno) 50 (2014), 39–49. (2014) Zbl1324.42048MR3194767DOI10.5817/AM2014-1-39
- Kaushik, S.K., Sharma, S.K., Poumai, K.T., On Schauder frames in conjugate Banach spaces, Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659. (2013) Zbl1277.46009MR3096803
- Poumai, K.T., Kaushik, S.K., Retro Banach frames, almost exact retro Banach frames in Banach spaces, Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48. (2015) MR3340290
- Sharma, S.K., 10.1142/S0219691314500155, Int. J. Wavelets Multiresolut Inf. Process 12 (2) (2014), 10 pages, 1450015. (2014) Zbl1290.42061MR3190066DOI10.1142/S0219691314500155
- Singer, I., Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag , New York, Heidelberg, Berlin, 1970. (1970) Zbl0197.38601MR0270044
- Singer, I., Bases in Banach spaces II, Springer-Verlag, New York, Heidelberg, Berlin, 1981. (1981) Zbl0467.46020
- Terekhin, P.A., 10.1007/s10688-010-0024-z, Funct. Anal. Appl. 44 (3) (2010), 199–208. (2010) Zbl1271.42043MR2760513DOI10.1007/s10688-010-0024-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.