Uniqueness of entire functions concerning difference polynomials
Mathematica Bohemica (2014)
- Volume: 139, Issue: 1, page 89-97
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMeng, Chao. "Uniqueness of entire functions concerning difference polynomials." Mathematica Bohemica 139.1 (2014): 89-97. <http://eudml.org/doc/261089>.
@article{Meng2014,
abstract = {In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha (z)$ a small function with respect to both $f(z)$ and $g(z)$. Suppose that $c$ is a non-zero complex constant and $n\ge 7$ (or $n\ge 10$) is an integer. If $f^\{n\}(z)(f(z)-1)f(z+c)$ and $g^\{n\}(z)(g(z)-1)g(z+c)$ share “$(\alpha (z),2)$” (or $(\alpha (z),2)^\{*\}$), then $f(z)\equiv g(z)$. Our results extend and generalize some well known previous results.},
author = {Meng, Chao},
journal = {Mathematica Bohemica},
keywords = {entire function; difference polynomial; uniqueness; entire function; difference polynomial; uniqueness},
language = {eng},
number = {1},
pages = {89-97},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness of entire functions concerning difference polynomials},
url = {http://eudml.org/doc/261089},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Meng, Chao
TI - Uniqueness of entire functions concerning difference polynomials
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 89
EP - 97
AB - In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha (z)$ a small function with respect to both $f(z)$ and $g(z)$. Suppose that $c$ is a non-zero complex constant and $n\ge 7$ (or $n\ge 10$) is an integer. If $f^{n}(z)(f(z)-1)f(z+c)$ and $g^{n}(z)(g(z)-1)g(z+c)$ share “$(\alpha (z),2)$” (or $(\alpha (z),2)^{*}$), then $f(z)\equiv g(z)$. Our results extend and generalize some well known previous results.
LA - eng
KW - entire function; difference polynomial; uniqueness; entire function; difference polynomial; uniqueness
UR - http://eudml.org/doc/261089
ER -
References
top- Banerjee, A., Mukherjee, S., Uniqueness of meromorphic functions concerning differential monomials sharing the same value, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 191-206. (2007) Zbl1164.30022MR2354463
- Chiang, Y. M., Feng, S. J., 10.1007/s11139-007-9101-1, Ramanujan J. 16 (2008), 105-129. (2008) Zbl1152.30024MR2407244DOI10.1007/s11139-007-9101-1
- Clunie, J., 10.1112/jlms/s1-42.1.389, J. Lond. Math. Soc. 42 (1967), 389-392. (1967) Zbl0169.40801MR0214769DOI10.1112/jlms/s1-42.1.389
- Fang, M. L., Hong, W., A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32 (2001), 1343-1348. (2001) Zbl1005.30023MR1875450
- Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs Clarendon, Oxford (1964). (1964) Zbl0115.06203MR0164038
- Hayman, W. K., Research Problems in Function Theory, University of London The Athlone Press, London (1967). (1967) Zbl0158.06301MR0217268
- Hayman, W. K., 10.2307/1969890, Ann. Math. (2) 70 (1959), 9-42. (1959) Zbl0088.28505MR0110807DOI10.2307/1969890
- Lin, S. H., Lin, W. C., 10.2996/kmj/1151936441, Kodai Math. J. 29 (2006), 269-280. (2006) Zbl1126.30018MR2247436DOI10.2996/kmj/1151936441
- Lin, W. C., Yi, H. X., 10.1080/02781070412331298624, Complex Variables, Theory Appl. 49 (2004), 793-806. (2004) Zbl1067.30065MR2097218DOI10.1080/02781070412331298624
- Lin, X. Q., Lin, W. C., 10.1016/S0252-9602(11)60298-1, Acta Math. Sci., Ser. B, Engl. Ed. 31 (2011), 1062-1076. (2011) Zbl1240.30159MR2830545DOI10.1016/S0252-9602(11)60298-1
- Wang, G., Han, D. L., Wen, Z. T., Uniqueness theorems on difference monomials of entire functions, Abstr. Appl. Anal. 2012 ID 407351, 8 pages (2012). (2012) Zbl1247.30047MR2947727
- Yang, C. C., Hua, X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. (1997) Zbl0890.30019MR1469799
- Yang, L., Value Distribution Theory, Translated and revised from the 1982 Chinese original. Science Press, Beijing Springer, Berlin (1993). (1993) Zbl0790.30018MR1301781
- Yi, H. X., 10.1080/17476939508814833, Complex Variables, Theory Appl. 28 (1995), 1-11. (1995) Zbl0841.30027DOI10.1080/17476939508814833
- Zhang, J. L., 10.1016/j.jmaa.2010.01.038, J. Math. Anal. Appl. 367 (2010), 401-408. (2010) Zbl1188.30044MR2607267DOI10.1016/j.jmaa.2010.01.038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.