Existence of nonzero solutions for a class of damped vibration problems with impulsive effects

Liang Bai; Binxiang Dai

Applications of Mathematics (2014)

  • Volume: 59, Issue: 2, page 145-165
  • ISSN: 0862-7940

Abstract

top
In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.

How to cite

top

Bai, Liang, and Dai, Binxiang. "Existence of nonzero solutions for a class of damped vibration problems with impulsive effects." Applications of Mathematics 59.2 (2014): 145-165. <http://eudml.org/doc/261100>.

@article{Bai2014,
abstract = {In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.},
author = {Bai, Liang, Dai, Binxiang},
journal = {Applications of Mathematics},
keywords = {impulsive problem; damped vibration problem; variational method; critical point; impulsive problem; damped vibration problem; variational method; critical point; impulses at fixed times; periodic boundary value problem; multiplicity result},
language = {eng},
number = {2},
pages = {145-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of nonzero solutions for a class of damped vibration problems with impulsive effects},
url = {http://eudml.org/doc/261100},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Bai, Liang
AU - Dai, Binxiang
TI - Existence of nonzero solutions for a class of damped vibration problems with impulsive effects
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 145
EP - 165
AB - In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.
LA - eng
KW - impulsive problem; damped vibration problem; variational method; critical point; impulsive problem; damped vibration problem; variational method; critical point; impulses at fixed times; periodic boundary value problem; multiplicity result
UR - http://eudml.org/doc/261100
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., 10.1016/j.amc.2003.12.096, Appl. Math. Comput. 161 (2005), 433-439. (2005) Zbl1070.34042MR2112416DOI10.1016/j.amc.2003.12.096
  2. Bai, L., Dai, B., 10.1016/j.jfranklin.2011.08.003, J. Franklin Inst. 348 (2011), 2607-2624. (2011) Zbl1266.34044MR2845341DOI10.1016/j.jfranklin.2011.08.003
  3. Bai, L., Dai, B., 10.1016/j.mcm.2011.01.006, Math. Comput. Modelling 53 (2011), 1844-1855. (2011) Zbl1219.34039MR2782888DOI10.1016/j.mcm.2011.01.006
  4. Brézis, H., Nirenberg, L., 10.1002/cpa.3160440808, Commun. Pure Appl. Math. 44 (1991), 939-963. (1991) MR1127041DOI10.1002/cpa.3160440808
  5. Dai, B., Su, H., Hu, D., Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal., Theory Methods Appl. 70 (2009), 126-134. (2009) Zbl1166.34043MR2468223
  6. Guan, Z.-H., Chen, G., Ueta, T., 10.1109/9.880633, IEEE Trans. Autom. Control 45 (2000), 1724-1727. (2000) Zbl0990.93105MR1791705DOI10.1109/9.880633
  7. Han, X., Zhang, H., 10.1016/j.cam.2010.08.040, J. Comput. Appl. Math. 235 (2011), 1531-1541. (2011) Zbl1211.34008MR2728109DOI10.1016/j.cam.2010.08.040
  8. Lakmeche, A., Arino, O., Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 265-287. (2000) Zbl1011.34031MR1744966
  9. Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) MR1082551
  10. Li, X., Wu, X., Wu, K., 10.1016/j.na.2009.06.044, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 135-142. (2010) Zbl1186.34056MR2574925DOI10.1016/j.na.2009.06.044
  11. Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74 Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
  12. Nieto, J. J., 10.1016/S0362-546X(01)00889-6, Nonlinear Anal., Theory Methods Appl. 51 (2002), 1223-1232. (2002) Zbl1015.34010MR1926625DOI10.1016/S0362-546X(01)00889-6
  13. Nieto, J. J., 10.1016/j.aml.2010.04.015, Appl. Math. Lett. 23 (2010), 940-942. (2010) Zbl1197.34041MR2651478DOI10.1016/j.aml.2010.04.015
  14. Nieto, J. J., Rodríguez-López, R., 10.1016/j.na.2005.05.068, Nonlinear Anal., Theory Methods Appl. 64 (2006), 368-380. (2006) Zbl1094.34007MR2188464DOI10.1016/j.na.2005.05.068
  15. Nieto, J. J., Rodríguez-López, R., 10.1016/j.jmaa.2006.06.029, J. Math. Anal. Appl. 328 (2007), 1343-1368. (2007) Zbl1113.45007MR2290058DOI10.1016/j.jmaa.2006.06.029
  16. Samoĭlenko, A. M., Perestyuk, N. A., Impulsive Differential Equations. Transl. from the Russian by Yury Chapovsky, World Scientific Series on Nonlinear Science, Series A 14 World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787
  17. Sun, J., Chen, H., Nieto, J. J., Otero-Novoa, M., 10.1016/j.na.2010.02.034, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4575-4586. (2010) Zbl1198.34036MR2639205DOI10.1016/j.na.2010.02.034
  18. Tian, Y., Ge, W., 10.1017/S0013091506001532, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. (2008) Zbl1163.34015MR2465922DOI10.1017/S0013091506001532
  19. Tian, Y., Ge, W., 10.1016/j.na.2009.06.051, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 277-287. (2010) Zbl1191.34038MR2574937DOI10.1016/j.na.2009.06.051
  20. Wang, L., Ge, W., Pei, M., 10.1007/s10492-010-0015-7, Appl. Math., Praha 55 (2010), 405-418. (2010) Zbl1224.34091MR2737720DOI10.1007/s10492-010-0015-7
  21. Wu, X., Chen, J., 10.1016/j.amc.2008.10.020, Appl. Math. Comput. 207 (2009), 230-235. (2009) Zbl1166.34316MR2492737DOI10.1016/j.amc.2008.10.020
  22. Wu, X., Chen, S., Teng, K., 10.1016/j.na.2006.12.043, Nonlinear Anal., Theory Methods Appl. 68 (2008), 1432-1441. (2008) Zbl1141.34011MR2388824DOI10.1016/j.na.2006.12.043
  23. Wu, X., Wang, S., On a class of damped vibration problems with obstacles, Nonlinear Anal., Real World Appl. 11 (2010), 2973-2988. (2010) Zbl1202.34082MR2661960
  24. Wu, X., Zhou, J., 10.1016/j.jmaa.2007.04.036, J. Math. Anal. Appl. 337 (2008), 1053-1063. (2008) Zbl1143.34028MR2386356DOI10.1016/j.jmaa.2007.04.036
  25. Xiao, J., Nieto, J. J., 10.1016/j.jfranklin.2010.12.003, J. Franklin Inst. 348 (2011), 369-377. (2011) Zbl1228.34048MR2771846DOI10.1016/j.jfranklin.2010.12.003
  26. Zhao, X., Ge, W., 10.1007/s10492-011-0021-4, Appl. Math., Praha 56 (2011), 371-387. (2011) Zbl1240.26011MR2833167DOI10.1007/s10492-011-0021-4
  27. Zhou, J., Li, Y., 10.1016/j.na.2009.01.140, Nonlinear Anal., Theory Methods Appl. 71 (2009), 2856-2865. (2009) Zbl1175.34035MR2532812DOI10.1016/j.na.2009.01.140
  28. Zhou, J., Li, Y., 10.1016/j.na.2009.08.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. (2010) Zbl1193.34057MR2577560DOI10.1016/j.na.2009.08.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.