Existence of nonzero solutions for a class of damped vibration problems with impulsive effects
Applications of Mathematics (2014)
- Volume: 59, Issue: 2, page 145-165
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBai, Liang, and Dai, Binxiang. "Existence of nonzero solutions for a class of damped vibration problems with impulsive effects." Applications of Mathematics 59.2 (2014): 145-165. <http://eudml.org/doc/261100>.
@article{Bai2014,
abstract = {In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.},
author = {Bai, Liang, Dai, Binxiang},
journal = {Applications of Mathematics},
keywords = {impulsive problem; damped vibration problem; variational method; critical point; impulsive problem; damped vibration problem; variational method; critical point; impulses at fixed times; periodic boundary value problem; multiplicity result},
language = {eng},
number = {2},
pages = {145-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of nonzero solutions for a class of damped vibration problems with impulsive effects},
url = {http://eudml.org/doc/261100},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Bai, Liang
AU - Dai, Binxiang
TI - Existence of nonzero solutions for a class of damped vibration problems with impulsive effects
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 145
EP - 165
AB - In this paper, a class of damped vibration problems with impulsive effects is considered. An existence result is obtained by using the variational method and the critical point theorem due to Brezis and Nirenberg. The obtained result is also valid and new for the corresponding second-order impulsive Hamiltonian system. Finally, an example is presented to illustrate the feasibility and effectiveness of the result.
LA - eng
KW - impulsive problem; damped vibration problem; variational method; critical point; impulsive problem; damped vibration problem; variational method; critical point; impulses at fixed times; periodic boundary value problem; multiplicity result
UR - http://eudml.org/doc/261100
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1016/j.amc.2003.12.096, Appl. Math. Comput. 161 (2005), 433-439. (2005) Zbl1070.34042MR2112416DOI10.1016/j.amc.2003.12.096
- Bai, L., Dai, B., 10.1016/j.jfranklin.2011.08.003, J. Franklin Inst. 348 (2011), 2607-2624. (2011) Zbl1266.34044MR2845341DOI10.1016/j.jfranklin.2011.08.003
- Bai, L., Dai, B., 10.1016/j.mcm.2011.01.006, Math. Comput. Modelling 53 (2011), 1844-1855. (2011) Zbl1219.34039MR2782888DOI10.1016/j.mcm.2011.01.006
- Brézis, H., Nirenberg, L., 10.1002/cpa.3160440808, Commun. Pure Appl. Math. 44 (1991), 939-963. (1991) MR1127041DOI10.1002/cpa.3160440808
- Dai, B., Su, H., Hu, D., Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal., Theory Methods Appl. 70 (2009), 126-134. (2009) Zbl1166.34043MR2468223
- Guan, Z.-H., Chen, G., Ueta, T., 10.1109/9.880633, IEEE Trans. Autom. Control 45 (2000), 1724-1727. (2000) Zbl0990.93105MR1791705DOI10.1109/9.880633
- Han, X., Zhang, H., 10.1016/j.cam.2010.08.040, J. Comput. Appl. Math. 235 (2011), 1531-1541. (2011) Zbl1211.34008MR2728109DOI10.1016/j.cam.2010.08.040
- Lakmeche, A., Arino, O., Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 265-287. (2000) Zbl1011.34031MR1744966
- Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). (1989) MR1082551
- Li, X., Wu, X., Wu, K., 10.1016/j.na.2009.06.044, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 135-142. (2010) Zbl1186.34056MR2574925DOI10.1016/j.na.2009.06.044
- Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74 Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
- Nieto, J. J., 10.1016/S0362-546X(01)00889-6, Nonlinear Anal., Theory Methods Appl. 51 (2002), 1223-1232. (2002) Zbl1015.34010MR1926625DOI10.1016/S0362-546X(01)00889-6
- Nieto, J. J., 10.1016/j.aml.2010.04.015, Appl. Math. Lett. 23 (2010), 940-942. (2010) Zbl1197.34041MR2651478DOI10.1016/j.aml.2010.04.015
- Nieto, J. J., Rodríguez-López, R., 10.1016/j.na.2005.05.068, Nonlinear Anal., Theory Methods Appl. 64 (2006), 368-380. (2006) Zbl1094.34007MR2188464DOI10.1016/j.na.2005.05.068
- Nieto, J. J., Rodríguez-López, R., 10.1016/j.jmaa.2006.06.029, J. Math. Anal. Appl. 328 (2007), 1343-1368. (2007) Zbl1113.45007MR2290058DOI10.1016/j.jmaa.2006.06.029
- Samoĭlenko, A. M., Perestyuk, N. A., Impulsive Differential Equations. Transl. from the Russian by Yury Chapovsky, World Scientific Series on Nonlinear Science, Series A 14 World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787
- Sun, J., Chen, H., Nieto, J. J., Otero-Novoa, M., 10.1016/j.na.2010.02.034, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4575-4586. (2010) Zbl1198.34036MR2639205DOI10.1016/j.na.2010.02.034
- Tian, Y., Ge, W., 10.1017/S0013091506001532, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. (2008) Zbl1163.34015MR2465922DOI10.1017/S0013091506001532
- Tian, Y., Ge, W., 10.1016/j.na.2009.06.051, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 277-287. (2010) Zbl1191.34038MR2574937DOI10.1016/j.na.2009.06.051
- Wang, L., Ge, W., Pei, M., 10.1007/s10492-010-0015-7, Appl. Math., Praha 55 (2010), 405-418. (2010) Zbl1224.34091MR2737720DOI10.1007/s10492-010-0015-7
- Wu, X., Chen, J., 10.1016/j.amc.2008.10.020, Appl. Math. Comput. 207 (2009), 230-235. (2009) Zbl1166.34316MR2492737DOI10.1016/j.amc.2008.10.020
- Wu, X., Chen, S., Teng, K., 10.1016/j.na.2006.12.043, Nonlinear Anal., Theory Methods Appl. 68 (2008), 1432-1441. (2008) Zbl1141.34011MR2388824DOI10.1016/j.na.2006.12.043
- Wu, X., Wang, S., On a class of damped vibration problems with obstacles, Nonlinear Anal., Real World Appl. 11 (2010), 2973-2988. (2010) Zbl1202.34082MR2661960
- Wu, X., Zhou, J., 10.1016/j.jmaa.2007.04.036, J. Math. Anal. Appl. 337 (2008), 1053-1063. (2008) Zbl1143.34028MR2386356DOI10.1016/j.jmaa.2007.04.036
- Xiao, J., Nieto, J. J., 10.1016/j.jfranklin.2010.12.003, J. Franklin Inst. 348 (2011), 369-377. (2011) Zbl1228.34048MR2771846DOI10.1016/j.jfranklin.2010.12.003
- Zhao, X., Ge, W., 10.1007/s10492-011-0021-4, Appl. Math., Praha 56 (2011), 371-387. (2011) Zbl1240.26011MR2833167DOI10.1007/s10492-011-0021-4
- Zhou, J., Li, Y., 10.1016/j.na.2009.01.140, Nonlinear Anal., Theory Methods Appl. 71 (2009), 2856-2865. (2009) Zbl1175.34035MR2532812DOI10.1016/j.na.2009.01.140
- Zhou, J., Li, Y., 10.1016/j.na.2009.08.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. (2010) Zbl1193.34057MR2577560DOI10.1016/j.na.2009.08.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.