Some results for fractional impulsive boundary value problems on infinite intervals

Xiangkui Zhao; Weigao Ge

Applications of Mathematics (2011)

  • Volume: 56, Issue: 4, page 371-387
  • ISSN: 0862-7940

Abstract

top
In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.

How to cite

top

Zhao, Xiangkui, and Ge, Weigao. "Some results for fractional impulsive boundary value problems on infinite intervals." Applications of Mathematics 56.4 (2011): 371-387. <http://eudml.org/doc/116545>.

@article{Zhao2011,
abstract = {In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.},
author = {Zhao, Xiangkui, Ge, Weigao},
journal = {Applications of Mathematics},
keywords = {fractional derivative; impulsive equations; positive solutions; fixed point theorem; monotone iterative method; fractional derivative; impulsive equation; monotone iterative method},
language = {eng},
number = {4},
pages = {371-387},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results for fractional impulsive boundary value problems on infinite intervals},
url = {http://eudml.org/doc/116545},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Zhao, Xiangkui
AU - Ge, Weigao
TI - Some results for fractional impulsive boundary value problems on infinite intervals
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 371
EP - 387
AB - In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
LA - eng
KW - fractional derivative; impulsive equations; positive solutions; fixed point theorem; monotone iterative method; fractional derivative; impulsive equation; monotone iterative method
UR - http://eudml.org/doc/116545
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., 10.1016/S0096-3003(99)00074-0, Appl. Math. Comput. 114 (2000), 51-59. (2000) Zbl1047.34008MR1775121DOI10.1016/S0096-3003(99)00074-0
  2. Ahmeda, E., Elgazzar, A. S., 10.1016/j.physa.2007.01.010, Physic A 379 (2007), 607-614. (2007) DOI10.1016/j.physa.2007.01.010
  3. Bai, Z., Lü, H., 10.1016/j.jmaa.2005.02.052, J. Math. Anal. Appl. 311 (2005), 495-505. (2005) Zbl1079.34048MR2168413DOI10.1016/j.jmaa.2005.02.052
  4. Ding, W., Han, M., 10.1016/S0096-3003(03)00811-7, Appl. Math. Comput. 155 (2004), 709-726. (2004) Zbl1102.34324MR2078208DOI10.1016/S0096-3003(03)00811-7
  5. He, J. H., Nonlinear oscillation with fractional derivative and its applications, In: International Conference on Vibrating Engineering, Dalian, China (1998), 288-291. 
  6. He, J. H., Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15 (1999), 86-90. (1999) 
  7. He, J. H., 10.1016/S0045-7825(98)00108-X, Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68. (1998) Zbl0942.76077MR1665221DOI10.1016/S0045-7825(98)00108-X
  8. Hristova, S. G., Bainov, D. D., 10.1006/jmaa.1996.0001, J. Math. Anal. Appl. 197 (1996), 1-13. (1996) Zbl0849.34051MR1371270DOI10.1006/jmaa.1996.0001
  9. Lee, E. K., Lee, Y.-H., 10.1016/j.amc.2003.10.013, Appl. Math. Comput. 158 (2004), 745-759. (2004) MR2095700DOI10.1016/j.amc.2003.10.013
  10. Liu, X., Guo, D., 10.1006/jmaa.1997.5688, J. Math. Anal. Appl. 216 (1997), 284-302. (1997) Zbl0889.45016MR1487265DOI10.1006/jmaa.1997.5688
  11. Mainardi, F., Fractional calculus: Some basic problems in continuum and statistical mechanics, In: Fractals and Fractional Calculus in Continuum Mechanics A. Carpinteri, F. Mainardi Springer New York (1997), 291-348. (1997) MR1611587
  12. Ouahab, A., 10.1016/j.na.2007.10.021, Nonlinear Anal., Theory Methods Appl. 69 (2008), 3877-3896. (2008) Zbl1169.34006MR2463341DOI10.1016/j.na.2007.10.021
  13. Su, X., 10.1016/j.aml.2008.03.001, Appl. Math. Lett. 22 (2009), 64-69. (2009) Zbl1163.34321MR2483163DOI10.1016/j.aml.2008.03.001
  14. Wei, Z., 10.1006/jmaa.1995.1351, J. Math. Anal. Appl. 195 (1995), 214-229. (1995) Zbl0849.45006MR1352819DOI10.1006/jmaa.1995.1351
  15. Yan, B., 10.1006/jmaa.2000.7392, J. Math. Anal. Appl. 259 (2001), 94-114. (2001) Zbl1009.34059MR1836447DOI10.1006/jmaa.2000.7392
  16. Yan, B., Liu, Y., 10.1016/S0096-3003(02)00801-9, Appl. Math. Comput. 147 (2004), 629-644. (2004) Zbl1045.34009MR2011077DOI10.1016/S0096-3003(02)00801-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.