On transient queue-size distribution in the batch-arrivals system with a single vacation policy
Kybernetika (2014)
- Volume: 50, Issue: 1, page 126-141
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Abate, J., Choudhury, G. L., Whitt, W., An introduction to numerical transform inversion and its application to probability models., In: Computational Probability (W. Grassmann, ed.), Kluwer, Boston 2000, pp. 257-323. Zbl0945.65008
- Bischof, W., 10.1023/A:1013992708103, Queueing Syst. 39 (2001), 4, 265-301. Zbl0994.60088MR1885740DOI10.1023/A:1013992708103
- Borovkov, A. A., Stochastic Processes in Queueing Theory., Springer-Verlag 1976. Zbl0319.60057MR0391297
- Bratiichuk, M. S., Kempa, W. M., Application of the superposition of renewal processes to the study of batch arrival queues., Queueing Syst. 44 (2003), 51-67. MR1989866
- Bratiichuk, M. S., Kempa, W. M., 10.1081/STM-200033115, Stoch. Models 20 (2004), 4, 457-472. MR2094048DOI10.1081/STM-200033115
- Choudhury, G., 10.1016/S0305-0548(01)00059-4, Comput. Oper. Res. 29 (2002), 14, 1941-1955. Zbl1010.90010MR1920586DOI10.1016/S0305-0548(01)00059-4
- Hur, S., Ahn, S., 10.1016/j.apm.2005.03.002, Appl. Math. Model. 29 (2005), 12, 1164-1181. Zbl1163.90425DOI10.1016/j.apm.2005.03.002
- Kempa, W. M., 10.1007/s00186-008-0212-2, Math. Methods Oper. Res. 69 (2009), 1, 81-97. Zbl1170.60032MR2476049DOI10.1007/s00186-008-0212-2
- Kempa, W. M., 10.1080/07362990903417920, Stoch. Anal. Appl. 28 (2010), 1, 26-43. Zbl1189.60168MR2597978DOI10.1080/07362990903417920
- Kempa, W. M., On departure process in the batch arrival queue with single vacation and setup time., Ann. UMCS, AI 10 (2010), 1, 93-102. Zbl1284.60162MR3116951
- Kempa, W. M., Characteristics of vacation cycle in the batch arrival queueing system with single vacations and exhaustive service., Internat. J. Appl. Math. 23 (2010), 4, 747-758. Zbl1208.60096MR2731457
- Kempa, W. M., On main characteristics of the queue with single and batch arrivals and the queue size controlled by AQM algorithms., Kybernetika 47 (2011), 6, 930-943. Zbl1241.90035MR2907852
- Kempa, W. M., 10.1007/978-3-642-30782-9_4, Lecture Notes Comp. Sci. 7314 (2012), 47-60. DOI10.1007/978-3-642-30782-9_4
- Prabhu, N. U., Stochastic Storage Processes., Springer 1998. Zbl0888.60073MR1492990
- Takagi, H., Queueing Analysis. A Foundation of Performance Evaluation. Volume 1: Vacation and Priority Systems. Part 1., North-Holland, Amsterdam 1991. Zbl0744.60114MR1149382
- Tang, Y., Tang, X., The queue-length distribution for queue with single server vacation., Acta Math. Sci. (Eng. Ed.) 20 (2000), 3, 397-408. Zbl0984.60097MR1793213
- Tian, N., Zhang, Z. G., Vacation Queueing Models. Theory and Applications., Springer, New York 2006. Zbl1104.60004MR2248264