Non-stationary departure process in a batch-arrival queue with finite buffer capacity and threshold-type control mechanism
Wojciech M. Kempa; Dariusz Kurzyk
Kybernetika (2022)
- Volume: 58, Issue: 1, page 82-100
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKempa, Wojciech M., and Kurzyk, Dariusz. "Non-stationary departure process in a batch-arrival queue with finite buffer capacity and threshold-type control mechanism." Kybernetika 58.1 (2022): 82-100. <http://eudml.org/doc/297536>.
@article{Kempa2022,
abstract = {Non-stationary behavior of departure process in a finite-buffer $M^\{X\}/G/1/K$-type queueing model with batch arrivals, in which a threshold-type waking up $N$-policy is implemented, is studied. According to this policy, after each idle time a new busy period is being started with the $N$th message occurrence, where the threshold value $N$ is fixed. Using the analytical approach based on the idea of an embedded Markov chain, integral equations, continuous total probability law, renewal theory and linear algebra, a compact-form representation for the mixed double transform (probability generating function of the Laplace transform) of the probability distribution of the number of messages completely served up to fixed time $t$ is obtained. The considered queueing system has potential applications in modeling nodes of wireless sensor networks (WSNs) with battery saving mechanism based on threshold-type waking up of the radio. An illustrating simulational and numerical study is attached.},
author = {Kempa, Wojciech M., Kurzyk, Dariusz},
journal = {Kybernetika},
keywords = {departure process; finite-buffer queue; $N$-policy; power saving; transient state; wireless sensor network (WSN)},
language = {eng},
number = {1},
pages = {82-100},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-stationary departure process in a batch-arrival queue with finite buffer capacity and threshold-type control mechanism},
url = {http://eudml.org/doc/297536},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Kempa, Wojciech M.
AU - Kurzyk, Dariusz
TI - Non-stationary departure process in a batch-arrival queue with finite buffer capacity and threshold-type control mechanism
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 82
EP - 100
AB - Non-stationary behavior of departure process in a finite-buffer $M^{X}/G/1/K$-type queueing model with batch arrivals, in which a threshold-type waking up $N$-policy is implemented, is studied. According to this policy, after each idle time a new busy period is being started with the $N$th message occurrence, where the threshold value $N$ is fixed. Using the analytical approach based on the idea of an embedded Markov chain, integral equations, continuous total probability law, renewal theory and linear algebra, a compact-form representation for the mixed double transform (probability generating function of the Laplace transform) of the probability distribution of the number of messages completely served up to fixed time $t$ is obtained. The considered queueing system has potential applications in modeling nodes of wireless sensor networks (WSNs) with battery saving mechanism based on threshold-type waking up of the radio. An illustrating simulational and numerical study is attached.
LA - eng
KW - departure process; finite-buffer queue; $N$-policy; power saving; transient state; wireless sensor network (WSN)
UR - http://eudml.org/doc/297536
ER -
References
top- Abate, J., L., G., Choudhury, Whitt, W., , In: Computational Probability (W. Grassmann, ed.), Kluwer, Boston 2000, pp. 257-323. DOI
- Arumuganathan, R., Jeyakumar, S., , Appl. Math. Model. 29 (2005), 972-986. MR2038103DOI
- Choudhury, G., Baruah, H. K., , Sankhya Ser. B 62 (2000), 303-316. MR1802636DOI
- Choudhury, G., Borthakur, A., Stochastic decomposition results of batch arrival Poisson queue with a grand vacation process., Sankhya Ser. B 62 (2000), 448-462. MR1834167
- Choudhury, G., Paul, M., , Appl. Math. Comput. 156 (2004), 115-130. MR2087256DOI
- Cohen, J. W., The Single Server Queue., North-Holland, Amsterdam 1982. MR0668697
- Doshi, B. T., , Queueing Syst. 1 (1986), 29-66. MR0896237DOI
- García, Y. H., Diaz-Infante, S., Minjárez-Sosa, J. A., , Kybernetika 57 (2021), 493-512. MR4299460DOI
- Gerhardt, I., Nelson, B. L., , Informs J. Comput. 21 (2009), 630-640. MR2588345DOI
- Jiang, F. C., Huang, D. C., Yang, C. T., Leu, F. Y., , J. Supercomput. 59 (2012), 1312-1335. DOI
- Ke, J.-C., , Math. Method. Oper. Res. 54 (2001), 471-490. MR1890915DOI
- Ke, J.-C., Wang, K.-H., , Eur. J. Oper. Res. 142 (2002), 577-594. MR1922375DOI
- Kempa, W. M., , Stoch. Anal. Appl. 22 (2004), 1235-1255. MR2089066DOI
- Kempa, W. M., , Math. Meth. Oper. Res. 69 (2009), 81-97. Zbl1170.60032MR2476049DOI
- Kempa, W. M., , Commun. Stat. Theory 40 (2011), 2856-2865. MR2860790DOI
- Kempa, W. M., , Math. Commun. 17 (2012), 285-302. MR2946149DOI
- Kempa, W. M., , Kybernetika 50 (2014), 126-141. MR3195008DOI
- Kempa, W. M., , Perform. Eval. 108 (2017), 1-15. DOI
- Kempa, W. M., Kurzyk, D., , In: Software, Telecommunications and Computer Networks (SoftCOM), 2015, 23rd International Conference on IEEE, pp. 32-36. DOI
- Korolyuk, V. S., 10.1137/1119001, Theor. Probab. Appl. 19 (1974), 1-13. MR0402939DOI10.1137/1119001
- Reddy, G. V. Krishna, Nadarajan, R., Arumuganathan, R., , Comput. Oper. Res. 25 (1998), 957-967. MR1638645DOI
- Lee, H. W., Lee, S. S., Chae, K. C., , Queueing Syst. 15 (1994), 387-399. MR1266802DOI
- Lee, H. W., Lee, S. S., Park, J. O., Chae, K. C., , J. Appl. Prob. 31 (1994), 467-496. MR1274803DOI
- Lee, S. S., Lee, H. W., Chae, K. C., , Comput. Oper. Res. 22 (1995), 173-189. DOI
- Lee, H. S., Srinivasan, M. M., , Manag. Sci. 35 (1989), 708-721. MR1001484DOI
- Levy, Y., Yechiali, U., , Manag. Sci. 22 (1975), 202-211. DOI
- Maheswar, R., Jayaparvathy, R., Power control algorithm for wireless sensor networks using -policy queueing model., Power 2 (2010), 2378-2382.
- Nasr, W. W., Taaffe, M. R., , Informs J. Comput. 25 (2013), 758-773. MR3120933DOI
- Takagi, H., Queueing Analysis: A Foundation of Performance Evaluation, Vacation and Priority Systems, Part I, vol. I., North-Holland, Amsterdam 1991. MR1149382
- Takagi, H., , Queueing Syst. 14 (1993), 79-98. MR1238663DOI
- Tian, N., Zhang, Z. G., Vacation Queueing Models: Theory and Applications., Springer, 2006. MR2248264
- Yadin, M., Naor, P., , J. Oper. Res. Soc. 14 (1963), 393-405. DOI
- Yang, D.-Y., Cho, Y.-Ch., , Comput. J. 62 (2019), 130-143. MR3897421DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.