Convergence analysis for asymmetric Deffuant-Weisbuch model
Kybernetika (2014)
- Volume: 50, Issue: 1, page 32-45
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhang, Jiangbo. "Convergence analysis for asymmetric Deffuant-Weisbuch model." Kybernetika 50.1 (2014): 32-45. <http://eudml.org/doc/261151>.
@article{Zhang2014,
abstract = {In this paper, we investigate the convergence behavior of the asymmetric Deffuant-Weisbuch (DW) models during the opinion evolution. Based on the convergence of the asymmetric DW model that generalizes the conventional DW model, we first propose a new concept, the separation time, to study the transient behavior during the DW model's opinion evolution. Then we provide an upper bound of the expected separation time with the help of stochastic analysis. Finally, we show relations of the separation time with model parameters by simulations.},
author = {Zhang, Jiangbo},
journal = {Kybernetika},
keywords = {opinion dynamics; asymmetric Deffuant–Weisbuch model; convergence; separation time; opinion dynamics; asymmetric Deffuant-Weisbuch model; convergence; separation time},
language = {eng},
number = {1},
pages = {32-45},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convergence analysis for asymmetric Deffuant-Weisbuch model},
url = {http://eudml.org/doc/261151},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Zhang, Jiangbo
TI - Convergence analysis for asymmetric Deffuant-Weisbuch model
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 1
SP - 32
EP - 45
AB - In this paper, we investigate the convergence behavior of the asymmetric Deffuant-Weisbuch (DW) models during the opinion evolution. Based on the convergence of the asymmetric DW model that generalizes the conventional DW model, we first propose a new concept, the separation time, to study the transient behavior during the DW model's opinion evolution. Then we provide an upper bound of the expected separation time with the help of stochastic analysis. Finally, we show relations of the separation time with model parameters by simulations.
LA - eng
KW - opinion dynamics; asymmetric Deffuant–Weisbuch model; convergence; separation time; opinion dynamics; asymmetric Deffuant-Weisbuch model; convergence; separation time
UR - http://eudml.org/doc/261151
ER -
References
top- Boyd, S., Ghosh, A., Prabhakar, B., Shah, D., 10.1109/TIT.2006.874516, Trans. Inform. Theory 52 (2006), 2508-2530. Zbl1283.94005MR2238556DOI10.1109/TIT.2006.874516
- Chow, Y., Teicher, H., Probability Theory: Independence Interchangeability Martingales. Second edition., Springer-Verlag, Heidelberg - Berlin 1978. MR0513230
- Deffuant, G., Neau, D., Amblard, F., Weisbuch, G., Mixing beliefs among interacting agents., Adv. in Complex Systems 3 (2000), 87-98.
- Godsil, C., Royle, G., Algebraic Graph Theory., Springer-Verlag, New York 2001. Zbl0968.05002MR1829620
- Groeber, P., Schweitzer, F., Press, K., How groups can foster consensus: The case of local cultures., J. Artificial Societies and Social Simulations 12 (2009), 2/4.
- Harary, F., A criterion for unanimity in French's theory of social power., In: Studies in Social Power, Ann Arbor 1959, pp. 168-182.
- Hegselmann, R., Krause, U., Opinion dynamics and bounded confidence models. Analysis and Simulation., J. Artificial Societies and Social Simulations 5 (2002), 3.
- Hong, Y., Gao, L., Cheng, D., Hu, J., 10.1109/TAC.2007.895860, IEEE Trans. Automat. Control 52 (2007), 943-948. MR2324260DOI10.1109/TAC.2007.895860
- Hu, J., On robust consensus of multi-agent systems with communication delays., Kybernetika 45 (2009), 768-784. Zbl1190.93003MR2599111
- Jiang, L., Hua, D., Zhu, J., Wang, B., Zhou., T., 10.1140/epjb/e2008-00342-3, The European Physical Journal B 65 (2008), 2, 251-255. DOI10.1140/epjb/e2008-00342-3
- Lorenz, J., 10.1142/S0129183107011789, Internat. J. of Modern Physics C 18 (2007), 12, 1819-1838. Zbl1151.91076DOI10.1142/S0129183107011789
- Lou, Y., Hong, Y., 10.1016/j.automatica.2012.02.032, Automatica 48 (2012), 5, 879-885. Zbl1246.93104MR2912813DOI10.1016/j.automatica.2012.02.032
- Serge, M., Marisa, Z., 10.1037/h0027568, J. Personal. Soc. Psychology 12 (1969), 1, 125-135. DOI10.1037/h0027568
- Shi, G., Hong, Y., 10.1016/j.automatica.2008.12.015, Automatica 45 (2009), 1165-1175. Zbl1162.93308MR2531590DOI10.1016/j.automatica.2008.12.015
- Thunberg, J., Song, W., Hong, Y., Hu, X., Distributed attitude synchronization using backstepping and sliding mode control., Journal of Control Theory and Applications 12 (2014), 1, 48-55. MR3152182
- Touri, B., Product of Random Stochastic Matrices And Distributed Averaging., Ph.D. Thesis, Dept. of Industrial Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011. Zbl1244.15023
- Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J., 10.1002/cplx.10031, Complexity 7 (2002), 3, 55-63. DOI10.1002/cplx.10031
- Zhang, J., Hong, Y., 10.1016/j.physa.2013.07.014, Physica A 392 (2013), 5289-5297. MR3102806DOI10.1016/j.physa.2013.07.014
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.