Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 3, page 341-379
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBremner, Murray R.. "Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures." Commentationes Mathematicae Universitatis Carolinae 55.3 (2014): 341-379. <http://eudml.org/doc/261865>.
@article{Bremner2014,
abstract = {First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.},
author = {Bremner, Murray R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free associative algebras; Gröbner bases; composition (diamond) lemma; universal associative envelopes; Lie algebras and triple systems; PBW theorem; Jordan algebras and triple systems; trilinear operations; computer algebra; free associative algebras; Gröbner bases; Lie algebras; Jordan algebras; triple systems; trilinear operations; composition diamond lemma; universal associative envelopes; PBW theorem; computer algebra},
language = {eng},
number = {3},
pages = {341-379},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures},
url = {http://eudml.org/doc/261865},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Bremner, Murray R.
TI - Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 3
SP - 341
EP - 379
AB - First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.
LA - eng
KW - free associative algebras; Gröbner bases; composition (diamond) lemma; universal associative envelopes; Lie algebras and triple systems; PBW theorem; Jordan algebras and triple systems; trilinear operations; computer algebra; free associative algebras; Gröbner bases; Lie algebras; Jordan algebras; triple systems; trilinear operations; composition diamond lemma; universal associative envelopes; PBW theorem; computer algebra
UR - http://eudml.org/doc/261865
ER -
References
top- Abramson M.P., Historical background to Gröbner's paper, ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 22–23. MR2571829
- Adams W.W., Loustaunau P., An Introduction to Gröbner Bases, American Mathematical Society, Providence, RI, 1994. Zbl0803.13015MR1287608
- Aguiar M., Loday J.-L., 10.1016/j.jpaa.2004.01.002, J. Pure Appl. Algebra 191 (2004), no. 3, 205–221. Zbl1097.17002MR2059613DOI10.1016/j.jpaa.2004.01.002
- Aymon M., Grivel P.-P., 10.1081/AGB-120017324, Comm. Algebra 31 (2003), no. 2, 527–544. Zbl1020.17002MR1968912DOI10.1081/AGB-120017324
- Baader F., Nipkow T., Term Rewriting and All That, Cambridge University Press, Cambridge, 1998. Zbl0948.68098MR1629216
- Bai C., Liu L., Ni X., Some results on L-dendriform algebras, J. Geom. Phys. 60 (2010), no. 6-8, 940–950. MR2647294
- Bashir S., Automorphisms of simple anti-Jordan pairs, Ph.D. thesis, University of Ottawa, Canada, 2008. MR2712919
- Becker T., Weispfenning V., Gröbner Bases: A Computational Approach to Commutative Algebra, Springer, New York, 1993. Zbl0772.13010MR1213453
- Benkart G., Roby T., 10.1006/jabr.1998.7511, J. Algebra 209 (1998), no. 1, 305–344; Addendum: “Down-up algebras”, J. Algebra 213 (1999), no. 1, 378. Zbl0922.17006MR1652138DOI10.1006/jabr.1998.7511
- Bergman G.M., 10.1016/0001-8708(78)90010-5, Adv. in Math. 29 (1978), no. 2, 178–218. Zbl0326.16019MR0506890DOI10.1016/0001-8708(78)90010-5
- Birkhoff G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), no. 4, 433–454. Zbl0013.00105
- Birkhoff G., Whitman P.M., 10.1090/S0002-9947-1949-0029366-6, Trans. Amer. Math. Soc. 65 (1949), 116–136. Zbl0032.25102MR0029366DOI10.1090/S0002-9947-1949-0029366-6
- Bokut L.A., 10.1007/BF01877233, Algebra i Logika 15 (1976), no. 2, 117–142. MR0506423DOI10.1007/BF01877233
- Bokut L.A., The method of Gröbner-Shirshov bases, Siberian Adv. Math. 9 (1999), no. 3, 1–16. Zbl0937.17004MR1796985
- Bokut L.A., Chen Y., Gröbner-Shirshov bases for Lie algebras: after A.I. Shirshov, Southeast Asian Bull. Math. 31 (2007), no. 6, 1057–1076. Zbl1150.17008MR2386984
- Bokut L.A., Chen Y., Deng X., Gröbner-Shirshov bases for Rota-Baxter algebras, Sibirsk. Mat. Zh. 51 (2010), no. 6, 1237–1250. Zbl1235.16021MR2797594
- Bokut L.A., Chen Y., Huang J., 10.1142/S0218196713500094, Internat. J. Algebra Comput. 23 (2013), no. 3, 547–571. Zbl1282.17004MR3048111DOI10.1142/S0218196713500094
- Bokut L.A., Chen Y., Li Y., Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras, Fundam. Prikl. Mat. 14 (2008), no. 8, 55–67. MR2744933
- Bokut L.A., Chen Y., Liu C., 10.1142/S0218196710005753, Internat. J. Algebra Comput. 20 (2010), no. 3, 391–415. Zbl1245.17001MR2658418DOI10.1142/S0218196710005753
- Bokut L.A., Chen Y., Qiu J., 10.1016/j.jpaa.2009.05.005, J. Pure Appl. Algebra 214 (2010), no. 1, 89–100. Zbl1213.16014MR2561769DOI10.1016/j.jpaa.2009.05.005
- Bokut L.A., Chibrikov E.S., Lyndon-Shirshov words, Gröbner-Shirshov bases, and free Lie algebras, Non-associative Algebra and Its Applications, pp. 17–39, Chapman & Hall/CRC, Boca Raton, 2006. MR2203694
- Bokut L.A., Kolesnikov P.S., 10.1023/A:1023490323855, J. Math. Sci. (N.Y.) 116 (2003), no. 1, 2894–2916. MR1811792DOI10.1023/A:1023490323855
- Bokut L.A., Kukin G.P., Algorithmic and Combinatorial Algebra, Kluwer Academic Publishers Group, Dordrecht, 1994. Zbl0826.17002MR1292459
- Bokut L.A., Shum K.P., Gröbner and Gröbner-Shirshov bases in algebra: an elementary approach, Southeast Asian Bull. Math. 29 (2005), no. 2, 227–252. Zbl1133.16037MR2217531
- Borges-Trenard M.A., Borges-Quintana M., Mora T., 10.1006/jsco.1999.0415, J. Symbolic Comput. 30 (2000), no. 4, 429–449. Zbl0996.16033MR1784751DOI10.1006/jsco.1999.0415
- Bremner M.R., 10.1515/gcc.2011.003, Groups Complex. Cryptol. 3 (2011), no. 1, 47–66. Zbl1250.16018MR2806081DOI10.1515/gcc.2011.003
- Bremner M.R., Algebras, dialgebras, and polynomial identities, Serdica Math. J. 38 (2012), 91–136. MR3014494
- Bremner M.R., Hentzel I.R., 10.1006/jabr.2000.8372, J. Algebra 231 (2000), no. 1, 387–405. Zbl0999.17044MR1779606DOI10.1006/jabr.2000.8372
- Bremner M.R., S. Madariaga S., 10.1080/00927872.2012.709567, Comm. Algebra 42 (2014), no. 1, 203–227. MR3169565DOI10.1080/00927872.2012.709567
- Bremner M.R., Peresi L.A., 10.1080/00927870701353126, Comm. Algebra 35 (2007), no. 9, 2932–2959. Zbl1172.17003MR2356309DOI10.1080/00927870701353126
- Bremner M.R., Peresi L.A., An application of lattice basis reduction to polynomial identities for algebraic structures, Linear Algebra Appl. 430 (2009), no. 2-3, 642–659. Zbl1173.17001MR2469318
- Bremner M.R., Peresi L.A., 10.1080/03081080802267748, Linear Multilinear Algebra 57 (2009), no. 6, 595–608. Zbl1188.17003MR2543721DOI10.1080/03081080802267748
- Buchberger B., An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal, translated from the 1965 German original by Michael P. Abramson, J. Symbolic Comput. 41 (2006), no. 3-4, 475–511. Zbl1158.01307MR2202562
- Buchberger B., 10.1007/BF01844169, Aequationes Math. 4 (1970), 374–383. Zbl0212.06401MR0268178DOI10.1007/BF01844169
- Buchberger B., History and basic features of the critical-pair/completion procedure, Rewriting Techniques and Applications (Dijon, 1985), J. Symbolic Comput. 3 (1987), nos. 1–2, 3–38. Zbl0645.68094MR0893184
- Buchberger B., Comments on the translation of my Ph.D. thesis: “An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal”, J. Symbolic Comput. 41 (2006), no. 3-4, 471–474. MR2202561
- Bueso J., Gómez-Torrecillas J., Verschoren A., Algorithmic Methods in Noncommutative Algebra: Applications to Quantum Groups, Kluwer Academic Publishers, Dordrecht, 2003. MR2006329
- Carlsson R., -ary algebras, Nagoya Math. J. 78 (1980), 45–56. Zbl0466.16017MR0571436
- Casas J.M., Insua M.A., Ladra M., 10.1016/j.jsc.2007.05.003, J. Symbolic Comput. 42 (2007), no. 11-12, 1052–1065. Zbl1131.17001MR2368072DOI10.1016/j.jsc.2007.05.003
- Chen Y., Mo Q., 10.1090/S0002-9939-2011-10889-X, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4207–4216. MR2823066DOI10.1090/S0002-9939-2011-10889-X
- Chen Y., Wang B., Gröbner-Shirshov bases and Hilbert series of free dendriform algebras, Southeast Asian Bull. Math. 34 (2010), no. 4, 639–650. Zbl1232.17002MR2768676
- Chibrikov E.S., 10.1080/00927872.2010.515637, Comm. Algebra 39 (2011), no. 11, 4014–4035. Zbl1251.17016MR2855109DOI10.1080/00927872.2010.515637
- Church A., 10.2307/1968337, Ann. of Math. (2) 33 (1932), no. 2, 346–366. Zbl0008.28902MR1503059DOI10.2307/1968337
- Church A., Rosser J.B., 10.1090/S0002-9947-1936-1501858-0, Trans. Amer. Math. Soc. 39 (1936), no. 3, 472–482. Zbl0014.38504MR1501858DOI10.1090/S0002-9947-1936-1501858-0
- Clifton J.M., A simplification of the computation of the natural representation of the symmetric group , Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250. Zbl0443.20013MR0624907
- Cohen A.M., Gijsbers D.A.H., Documentation on the GBNP Package, available at: tt{http://www.win.tue.nl/{ asciitilde}amc/pub/grobner/doc.html}.
- Cox D., Little J., O'Shea D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York, 1992. Zbl1118.13001MR1189133
- de Graaf W.A., Lie Algebras: Theory and Algorithms, North-Holland Publishing Co., Amsterdam, 2000. Zbl1122.17300MR1743970
- Dotsenko V., Khoroshkin A., 10.1215/00127094-2010-026, Duke Math. J. 153 (2010), no. 2, 363–396. Zbl1208.18007MR2667136DOI10.1215/00127094-2010-026
- Dotsenko V., Khoroshkin A., Quillen homology for operads via Gröbner bases, Doc. Math. 18 (2013), 707–747. Zbl1278.18018MR3084563
- Dotsenko V., Vallette B., 10.1017/S0017089513000505, Glasg. Math. J. 55 (2013), no. A, 55–74. Zbl1284.18026MR3110804DOI10.1017/S0017089513000505
- Eisenbud D., Peeva I., Sturmfels B., 10.1090/S0002-9939-98-04229-4, Proc. Amer. Math. Soc. 126 (1998), no. 3, 687–691. Zbl0898.16015MR1443825DOI10.1090/S0002-9939-98-04229-4
- Elgendy H.A., Polynomial Identities and Enveloping Algebras for -ary Structures, Ph.D. thesis, University of Saskatchewan, Canada, 2012. MR3152544
- Elgendy H.A., 10.1080/00927872.2012.749409, Comm. Algebra 42 (2014), no. 4, 1785–1810. MR3169671DOI10.1080/00927872.2012.749409
- Elgendy H.A., Bremner M.R., 10.1080/00927872.2011.558549, Comm. Algebra 40 (2012), no. 5, 1827–1842. Zbl1260.17005MR2924485DOI10.1080/00927872.2011.558549
- Ene V., Herzog J., Gröbner Bases in Commutative Algebra, American Mathematical Society, Providence, RI, 2012. Zbl1242.13001MR2850142
- Evans T., 10.1112/jlms/s1-26.1.64, J. London Math. Soc. 26 (1951), 64–71. Zbl0042.03303MR0038958DOI10.1112/jlms/s1-26.1.64
- Faulkner J.R., 10.1016/0021-8693(85)90189-9, J. Algebra 94 (1985), no. 2, 352–363. Zbl0596.17002MR0792960DOI10.1016/0021-8693(85)90189-9
- Faulkner J.R., Ferrar J.C., 10.1080/00927878008822505, Comm. Algebra 8 (1980), no. 11, 993–1013. Zbl0447.17003MR0577825DOI10.1080/00927878008822505
- Fröberg R., An Introduction to Gröbner Bases, John Wiley & Sons, Ltd., Chichester, 1997. Zbl0997.13500MR1483316
- Gerritzen L., 10.1016/S0019-3577(98)80029-3, Indag. Math. (N.S.) 9 (1998), no. 4, 491–501. Zbl0930.16016MR1691989DOI10.1016/S0019-3577(98)80029-3
- Gerritzen L., Hilbert series and non-associative Gröbner bases, Manuscripta Math. 103 (2000), no. 2, 161–167. Zbl0961.17002MR1796312
- Gerritzen L., 10.1016/j.jsc.2003.09.005, J. Symbolic Comput. 41 (2006), no. 3-4, 297–316. Zbl1158.17300MR2202553DOI10.1016/j.jsc.2003.09.005
- Gerritzen L., Holtkamp R., 10.1016/S0019-3577(98)80030-X, Indag. Math. (N.S.) 9 (1998), no. 4, 503–519. Zbl0930.16017MR1691990DOI10.1016/S0019-3577(98)80030-X
- Glennie C.M., 10.2140/pjm.1966.16.47, Pacific J. Math. 16 (1966), 47–59. Zbl0134.26903MR0186708DOI10.2140/pjm.1966.16.47
- Green E.L., An introduction to noncommutative Gröbner bases, Computational Algebra, pp. 167–190, Dekker, New York, 1994. Zbl0807.16002MR1245952
- Green E.L., Noncommutative Gröbner bases, and projective resolutions, Computational Methods for Representations of Groups and Algebras, pp. 29–60, Birkhäuser, Basel, 1999. Zbl0957.16033MR1714602
- Green E.L., Heath L.S., Keller B.J., Opal: a system for computing noncommutative Gröbner bases, Rewriting Techniques and Applications, pp. 331–334, Lecture Notes in Computer Science, 1232, Springer, 1997. MR1605520
- Green E.L., Mora T., Ufnarovski V., The non-commutative Gröbner freaks, Symbolic Rewriting Techniques (Ascona, 1995), pp. 93–104, Birkhäuser, Basel, 1998. Zbl1020.16017MR1624647
- Gröbner W., 10.1007/BF01695500, Monatsh. Math. Phys. 47 (1939), no. 1, 247–284. Zbl0021.22505MR1550816DOI10.1007/BF01695500
- Gröbner W., On the algebraic properties of integrals of linear differential equations with constant coefficients, translated from the German by Michael Abramson, ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 24–46. MR2571830
- Guo L., Sit W., Zhang R., 10.1016/j.jsc.2012.05.014, J. Symbolic Comput. 52 (2013), 97–123. MR3018130DOI10.1016/j.jsc.2012.05.014
- Hestenes M.R., 10.1007/BF00253936, Arch. Rational Mech. Anal. 11 (1962), 138–194. Zbl0201.37001MR0150166DOI10.1007/BF00253936
- Hodge T.L., Parshall B.J., 10.1090/S0002-9947-02-03050-7, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4359–4391. Zbl1012.17001MR1926880DOI10.1090/S0002-9947-02-03050-7
- Hou D., Bai C., 10.1007/s11464-011-0160-7, Front. Math. China 7 (2012), no. 1, 29–49. MR2876897DOI10.1007/s11464-011-0160-7
- Hou D., Ni X., Bai C., Pre-Jordan algebras, Math. Scand. 112 (2013), no. 1, 19–48. MR3057597
- Insua M.A., Ladra M., 10.1016/j.jsc.2007.07.020, J. Symbolic Comput. 44 (2009), no. 5, 517–526. Zbl1163.17004MR2499928DOI10.1016/j.jsc.2007.07.020
- Jacobson N., Structure and Representations of Jordan Algebras, American Mathematical Society, Providence, R.I., 1968. Zbl0218.17010MR0251099
- Kang S.-J., Lee D.-I., Lee K.-H., Park H., 10.1016/j.jalgebra.2007.02.001, J. Algebra 313 (2007), no. 2, 988–1004. Zbl1180.17005MR2329580DOI10.1016/j.jalgebra.2007.02.001
- Keller B.J., Algorithms and Orders for Finding Noncommutative Gröbner Bases, Ph.D. thesis, Virginia Polytechnic Institute and State University, 1997. MR2696478
- Keller B.J., Alternatives in implementing noncommutative Gröbner basis systems, Symbolic Rewriting Techniques, pp. 105–126, Birkhüser, Basel, 1998. Zbl0927.16042MR1624651
- Kleene S.C., 10.2307/1968749, Ann. of Math. (2) 35 (1934), no. 3, 529–544. Zbl0010.14602MR1503178DOI10.2307/1968749
- Knuth D.E., Bendix P.B., Simple word problems in universal algebras, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 263–297, Pergamon, Oxford, 1970. Zbl0188.04902MR0255472
- Li H., Gröbner Bases in Ring Theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR2894019
- Lister W.G., 10.1090/S0002-9947-1952-0045702-9, Trans. Amer. Math. Soc. 72 (1952), 217–242. Zbl0046.03404MR0045702DOI10.1090/S0002-9947-1952-0045702-9
- Lister W.G., 10.1090/S0002-9947-1971-0272835-6, Trans. Amer. Math. Soc. 154 (1971), 37–55. Zbl0502.17002MR0272835DOI10.1090/S0002-9947-1971-0272835-6
- Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269–293. Zbl0806.55009MR1252069
- Loday J.-L., Algèbres ayant deux opérations associatives (digèbres), C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 2, 141–146. Zbl0845.16036MR1345436
- Loday J.-L., Dialgebras, Dialgebras and Related Operads, pp. 7–66, Lecture Notes in Math., 1763, Springer, Berlin, 2001. Zbl0999.17002MR1860994
- Loday J.-L., Pirashvili T., 10.1007/BF01445099, Math. Ann. 296 (1993), no. 1, 139–158. Zbl0821.17022MR1213376DOI10.1007/BF01445099
- Loday J.-L., Vallette B., Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl1260.18001MR2954392
- Loos O., Lectures on Jordan Triples, University of British Columbia, Canada, 1971. Zbl0337.17006MR0325717
- Loos O., 10.1007/BF01679707, Manuscripta Math. 7 (1972), 103–112. Zbl0237.16007MR0304446DOI10.1007/BF01679707
- Macaulay F.S., The Algebraic Theory of Modular Systems, Cambridge University Press, 1916, available online: tt{http://archive.org/details/algebraictheoryo00macauoft}. Zbl0802.13001MR1281612
- Madariaga S., 10.1016/j.jsc.2013.10.016, J. Symbolic Comput. 60 (2014), 1–14. MR3131375DOI10.1016/j.jsc.2013.10.016
- Marché C., Normalized rewriting: a unified view of Knuth-Bendix completion and Gröbner bases computation, Symbolic Rewriting Techniques (Ascona, 1995), pp. 193–208, Progr. Comput. Sci. Appl. Logic, 15, Birkhäuser, Basel, 1998. Zbl0915.68100MR1624584
- Markl M., Shnider S., Stasheff J., Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002. Zbl1017.18001MR1898414
- McCrimmon K., A Taste of Jordan Algebras, Springer, New York, 2004. Zbl1044.17001MR2014924
- Meyberg K., Lectures on Algebras and Triple Systems, The University of Virginia, Charlottesville, 1972, available online: tt{http://www.math.uci.edu/{ asciitilde}brusso/Meyberg(Reduced2).pdf}. MR0340353
- Mikhalev A.A., Zolotykh A.A., 10.1142/S021819679800034X, Internat. J. Algebra Comput. 8 (1998), no. 6, 689–726. Zbl0923.16024MR1682224DOI10.1142/S021819679800034X
- Mora F., 10.1007/3-540-16776-5_740, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, 229, pp. 353–362, Springer, Berlin, 1986. MR0864254DOI10.1007/3-540-16776-5_740
- Mora T., 10.1016/0304-3975(94)90283-6, Theoret. Comput. Sci. 134 (1994), 131–173. Zbl0824.68056MR1299371DOI10.1016/0304-3975(94)90283-6
- Musson I.M., Lie Superalgebras and Enveloping Algebras, American Mathematical Society, Providence, 2012. Zbl1255.17001MR2906817
- Newman M.H.A., 10.2307/1968867, Annals of Math. 43 (1942), no. 2, 223–243. Zbl0060.12501MR0007372DOI10.2307/1968867
- The OEIS Foundation, On-line Encyclopedia of Integer Sequences, tt{http://oeis.org/}.
- Pérez-Izquierdo J.-M., 10.1016/j.jalgebra.2004.09.038, J. Algebra 284 (2005), no. 2, 480–493. MR2114566DOI10.1016/j.jalgebra.2004.09.038
- Pérez-Izquierdo J.-M., 10.1016/j.aim.2006.04.001, Adv. Math. 208 (2007), no. 2, 834–876. MR2304338DOI10.1016/j.aim.2006.04.001
- Pérez-Izquierdo J.-M., Shestakov I.P., 10.1016/S0021-8693(03)00389-2, J. Algebra 272 (2004), no. 1, 379–393. MR2029038DOI10.1016/S0021-8693(03)00389-2
- Qiu J., Gröbner-Shirshov bases for commutative algebras with multiple operators and free commutative Rota-Baxter algebras, tt{arXiv:1301.5018}.
- Rajaee S., Non-associative Gröbner bases, J. Symbolic Comput. 41 (2006), no. 8, 887–904. Zbl1236.17006MR2246715
- Rutherford D.E., Substitutional Analysis, Edinburgh, at the University Press, 1948. Zbl0174.31202MR0027272
- Shestakov I.P., Umirbaev U.U., 10.1006/jabr.2001.9123, J. Algebra 250 (2002), no. 2, 533–548. Zbl0993.17002MR1899864DOI10.1006/jabr.2001.9123
- Shirshov A.I., Some algorithmic problems for -algebras, Sibirsk. Mat. Zh. 3 (1962), 132–137. MR0183744
- Shirshov A.I., On a hypothesis in the theory of Lie algebras, Sibirsk. Mat. Zh. 3 (1962), 297–301. MR0182684
- Shirshov A.I., Selected Works of A.I. Shirshov, translated by M.R. Bremner and M.V. Kotchetov, edited by L.A. Bokut, V.N. Latyshev, I.P. Shestakov and E. Zelmanov, Birkhäuser, Basel, 2009. Zbl1188.01028MR2547481
- Ufnarovski V.S., 10.1017/CBO9780511565847.015, Gröbner Bases and Applications, pp. 259–280, Cambridge Univ. Press, Cambridge, 1998. Zbl0902.16002MR1708883DOI10.1017/CBO9780511565847.015
- Vallette B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008), 105–164. Zbl1159.18001MR2427978
- Young A., The Collected Papers of Alfred Young (1873–1940), , University of Toronto Press, 1977. MR0439548
- Zhukov A.I., Reduced systems of defining relations in non-associative algebras, Mat. Sbornik N.S. 27 (69) (1950), 267–280. MR0037831
- Zinbiel G.W., Encyclopedia of types of algebras 2010, Operads and Universal Algebra, pp. 217–297, Nankai Ser. Pure Appl. Math. Theoret. Phys., 9, World Sci. Publ., Hackensack, NJ, 2012. MR3013090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.