A -grading on a -dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type
Diego Aranda-Orna; Alberto Elduque; Mikhail Kochetov
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 3, page 285-313
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAranda-Orna, Diego, Elduque, Alberto, and Kochetov, Mikhail. "A $\mathbb {Z}_4^3$-grading on a $56$-dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type $E$." Commentationes Mathematicae Universitatis Carolinae 55.3 (2014): 285-313. <http://eudml.org/doc/261871>.
@article{Aranda2014,
abstract = {We describe two constructions of a certain $\mathbb \{Z\}_4^3$-grading on the so-called Brown algebra (a simple structurable algebra of dimension $56$ and skew-dimension $1$) over an algebraically closed field of characteristic different from $2$. The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types $E_6$, $E_7$ and $E_8$.},
author = {Aranda-Orna, Diego, Elduque, Alberto, Kochetov, Mikhail},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {graded algebra; structurable algebra; exceptional simple Lie algebra; graded algebra; structurable algebra; exceptional simple Lie algebra},
language = {eng},
number = {3},
pages = {285-313},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A $\mathbb \{Z\}_4^3$-grading on a $56$-dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type $E$},
url = {http://eudml.org/doc/261871},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Aranda-Orna, Diego
AU - Elduque, Alberto
AU - Kochetov, Mikhail
TI - A $\mathbb {Z}_4^3$-grading on a $56$-dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type $E$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 3
SP - 285
EP - 313
AB - We describe two constructions of a certain $\mathbb {Z}_4^3$-grading on the so-called Brown algebra (a simple structurable algebra of dimension $56$ and skew-dimension $1$) over an algebraically closed field of characteristic different from $2$. The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types $E_6$, $E_7$ and $E_8$.
LA - eng
KW - graded algebra; structurable algebra; exceptional simple Lie algebra; graded algebra; structurable algebra; exceptional simple Lie algebra
UR - http://eudml.org/doc/261871
ER -
References
top- Albuquerque H., Majid S., 10.1006/jabr.1998.7850, J. Algebra 220 (1999), no. 1, 188–224. Zbl0999.17006MR1713433DOI10.1006/jabr.1998.7850
- Allison B.N., 10.1007/BF01351677, Math. Ann. 237 (1978), 133–156. Zbl0368.17001MR0507909DOI10.1007/BF01351677
- Allison B.N., 10.1080/00927877908822432, Comm. Algebra 7 (1979), no. 17, 1835–1875. Zbl0422.17006MR0547712DOI10.1080/00927877908822432
- Allison B.N., 10.1080/00927879008823963, Comm. Algebra 18 (1990), no. 4, 1245–1279. Zbl0702.17002MR1059949DOI10.1080/00927879008823963
- Allison B.N., Faulkner J.R., 10.1090/S0002-9947-1984-0735416-2, Trans. Amer. Math. Soc. 283 (1984), no. 1, 185–210. Zbl0543.17015MR0735416DOI10.1090/S0002-9947-1984-0735416-2
- Allison B.N., Faulkner J.R., 10.1080/00927879208824337, Comm. Algebra 20 (1992), no. 1, 155–188. Zbl0753.17004MR1145331DOI10.1080/00927879208824337
- Allison B.N., Faulkner J.R., 10.1006/jabr.1993.1202, J. Algebra 161 (1993), no. 1, 1–19. Zbl0812.17002MR1245840DOI10.1006/jabr.1993.1202
- Brown R.B., 10.1073/pnas.50.5.947, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 947–949. MR0158913DOI10.1073/pnas.50.5.947
- Draper C., Elduque A., Maximal finite abelian subgroups of , arXiv:1312.4326.
- Draper C., Viruel A., Fine gradings on , arXiv:1207.6690.
- Elduque A., Fine gradings and gradings by root systems on simple Lie algebras, to appear in Rev. Mat. Iberoam.; arXiv:1303.0651.
- Elduque A., Kochetov M., Gradings on simple Lie algebras, Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI, 2013. Zbl1281.17001MR3087174
- Elduque A., Okubo S., 10.1016/j.jalgebra.2006.08.033, J. Algebra 307 (2007), no. 2, 864–890. Zbl1172.17013MR2275376DOI10.1016/j.jalgebra.2006.08.033
- Garibaldi S., 10.1006/jabr.2000.8514, J. Algebra 236 (2001), no. 2, 651–691. MR1813495DOI10.1006/jabr.2000.8514
- Jacobson N., Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications 39, American Mathematical Society, Providence, RI, 1968. Zbl0218.17010MR0251099
- McCrimmon K., 10.1090/S0002-9947-1969-0238916-9, Trans. Amer. Math. Soc. 139 (1969), 495–510. Zbl0175.02703MR0238916DOI10.1090/S0002-9947-1969-0238916-9
- McCrimmon K., 10.1090/S0002-9947-1970-0271181-3, Trans. Amer. Math. Soc. 148 (1970), 293–314. Zbl0224.17013MR0271181DOI10.1090/S0002-9947-1970-0271181-3
- Smirnov O.N., Simple and semisimple structurable algebras, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math. 131, Part 2, Amer. Math. Soc., Providence, RI, 1992, pp. 685–694. Zbl0765.17003MR1175866
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.