Ultracompanions of subsets of a group

I. Protasov; S. Slobodianiuk

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 2, page 257-265
  • ISSN: 0010-2628

Abstract

top
Let G be a group, β G be the Stone-Čech compactification of G endowed with the structure of a right topological semigroup and G * = β G G . Given any subset A of G and p G * , we define the p -companion Δ p ( A ) = A * G p of A , and characterize the subsets with finite and discrete ultracompanions.

How to cite

top

Protasov, I., and Slobodianiuk, S.. "Ultracompanions of subsets of a group." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 257-265. <http://eudml.org/doc/261872>.

@article{Protasov2014,
abstract = {Let $G$ be a group, $\beta G$ be the Stone-Čech compactification of $G$ endowed with the structure of a right topological semigroup and $G^*=\beta G\setminus G$. Given any subset $A$ of $G$ and $p\in G^*$, we define the $p$-companion $\Delta _p(A)= A^*\cap Gp$ of $A$, and characterize the subsets with finite and discrete ultracompanions.},
author = {Protasov, I., Slobodianiuk, S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group; Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group},
language = {eng},
number = {2},
pages = {257-265},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ultracompanions of subsets of a group},
url = {http://eudml.org/doc/261872},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Protasov, I.
AU - Slobodianiuk, S.
TI - Ultracompanions of subsets of a group
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 257
EP - 265
AB - Let $G$ be a group, $\beta G$ be the Stone-Čech compactification of $G$ endowed with the structure of a right topological semigroup and $G^*=\beta G\setminus G$. Given any subset $A$ of $G$ and $p\in G^*$, we define the $p$-companion $\Delta _p(A)= A^*\cap Gp$ of $A$, and characterize the subsets with finite and discrete ultracompanions.
LA - eng
KW - Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group; Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group
UR - http://eudml.org/doc/261872
ER -

References

top
  1. Banakh T., The Solecki submeasures and densities on groups, preprint available at arXiv:1211.0717. 
  2. Dales H., Lau A., Strauss D., Banach algebras on semigroups and their compactifications, Mem. Amer. Math. Soc. 2005 (2010). MR2650729
  3. Filali M., Lutsenko Ie., Protasov I., Boolean group ideals and the ideal structure of β G , Math. Stud. 30 (2008), 1–10. Zbl1199.22007
  4. Filali M., Protasov I., Ultrafilters and Topologies on Groups, Math. Stud. Monogr. Ser., Vol. 13, VNTL Publisher. Lviv, 2010. 
  5. Hindman N., Strauss D., Algebra in the Stone-Čech Compactification, 2nd edition, Walter de Gruyter, Berlin, 2012. Zbl0918.22001MR2893605
  6. Lutsenko Ie., Protasov I.V., 10.1142/S0218196709005135, Intern. J. Algebra Computation 19 (2009), 491–510. Zbl1186.20024MR2536188DOI10.1142/S0218196709005135
  7. Lutsenko Ie., Protasov I.V., Thin subsets of balleans, Appl. Gen. Topol. 11 (2010), 89–93. Zbl1207.54010MR2754973
  8. Lutsenko I.E., Protasov I.V., 10.1007/s11253-011-0502-3, Ukrainian Math. J. 63 (2011), 216–225. Zbl1258.20027MR2958840DOI10.1007/s11253-011-0502-3
  9. Protasov I., 10.1023/B:MATN.0000043466.45064.97, Math. Notes 76 (2004), 420–426. Zbl1078.20032MR2113084DOI10.1023/B:MATN.0000043466.45064.97
  10. Protasov I., Partitions of groups into thin subsets, Algebra Discrete Math. 11 (2011), no. 1, 88–92. Zbl1257.20046MR2858130
  11. Protasov I., Partitions of groups into sparse subsets, Algebra Discrete Math. 13, 1 (2012), no. 1, 107–110. Zbl1258.20036MR2963828
  12. Protasov I., 10.1007/s10958-011-0314-x, J. Math. Sciences 174 (2011), 486–514. Zbl1283.20029MR2768154DOI10.1007/s10958-011-0314-x
  13. Protasov I.V., Asymptotically scattered spaces, preprint available at arXiv:1212.0364. 
  14. Protasov I.V., Combinatorial derivation, Appl. Gen. Topology, to appear; preprint available at arXiv:1210.0696. MR3116152
  15. Protasov I.V., Slobodianiuk S., Thin subsets of groups, Ukrainian Math. J.(to appear). MR3176453
  16. Protasov I., Zarichnyi M., General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007. MR2406623
  17. Roe J., Lectures on Coarse Geometry, American Mathematical Society, Providence RI, 2003. Zbl1042.53027MR2007488
  18. Solecki S., 10.1007/s00039-005-0505-z, Geom. Funct. Analysis 15 (2005), 246–273. MR2140632DOI10.1007/s00039-005-0505-z
  19. Todorcevic S., Introduction to Ramsey Spaces, Princeton University Press, Princeton, 2010. MR2603812
  20. Zakrzewski P., 10.1007/s11253-012-0647-8, Ukrainian Math. J. 64 (2012), 306–308. MR3104766DOI10.1007/s11253-012-0647-8
  21. Zelenyuk Y., Ultrafilters and Topologies on Groups, de Gruyter Expositions in Mathematics, 50, Walter de Gruyter, Berlin, 2011. Zbl1215.22001MR2768144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.