Ultracompanions of subsets of a group
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 2, page 257-265
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topProtasov, I., and Slobodianiuk, S.. "Ultracompanions of subsets of a group." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 257-265. <http://eudml.org/doc/261872>.
@article{Protasov2014,
abstract = {Let $G$ be a group, $\beta G$ be the Stone-Čech compactification of $G$ endowed with the structure of a right topological semigroup and $G^*=\beta G\setminus G$. Given any subset $A$ of $G$ and $p\in G^*$, we define the $p$-companion $\Delta _p(A)= A^*\cap Gp$ of $A$, and characterize the subsets with finite and discrete ultracompanions.},
author = {Protasov, I., Slobodianiuk, S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group; Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group},
language = {eng},
number = {2},
pages = {257-265},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ultracompanions of subsets of a group},
url = {http://eudml.org/doc/261872},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Protasov, I.
AU - Slobodianiuk, S.
TI - Ultracompanions of subsets of a group
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 257
EP - 265
AB - Let $G$ be a group, $\beta G$ be the Stone-Čech compactification of $G$ endowed with the structure of a right topological semigroup and $G^*=\beta G\setminus G$. Given any subset $A$ of $G$ and $p\in G^*$, we define the $p$-companion $\Delta _p(A)= A^*\cap Gp$ of $A$, and characterize the subsets with finite and discrete ultracompanions.
LA - eng
KW - Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group; Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group
UR - http://eudml.org/doc/261872
ER -
References
top- Banakh T., The Solecki submeasures and densities on groups, preprint available at arXiv:1211.0717.
- Dales H., Lau A., Strauss D., Banach algebras on semigroups and their compactifications, Mem. Amer. Math. Soc. 2005 (2010). MR2650729
- Filali M., Lutsenko Ie., Protasov I., Boolean group ideals and the ideal structure of , Math. Stud. 30 (2008), 1–10. Zbl1199.22007
- Filali M., Protasov I., Ultrafilters and Topologies on Groups, Math. Stud. Monogr. Ser., Vol. 13, VNTL Publisher. Lviv, 2010.
- Hindman N., Strauss D., Algebra in the Stone-Čech Compactification, 2nd edition, Walter de Gruyter, Berlin, 2012. Zbl0918.22001MR2893605
- Lutsenko Ie., Protasov I.V., 10.1142/S0218196709005135, Intern. J. Algebra Computation 19 (2009), 491–510. Zbl1186.20024MR2536188DOI10.1142/S0218196709005135
- Lutsenko Ie., Protasov I.V., Thin subsets of balleans, Appl. Gen. Topol. 11 (2010), 89–93. Zbl1207.54010MR2754973
- Lutsenko I.E., Protasov I.V., 10.1007/s11253-011-0502-3, Ukrainian Math. J. 63 (2011), 216–225. Zbl1258.20027MR2958840DOI10.1007/s11253-011-0502-3
- Protasov I., 10.1023/B:MATN.0000043466.45064.97, Math. Notes 76 (2004), 420–426. Zbl1078.20032MR2113084DOI10.1023/B:MATN.0000043466.45064.97
- Protasov I., Partitions of groups into thin subsets, Algebra Discrete Math. 11 (2011), no. 1, 88–92. Zbl1257.20046MR2858130
- Protasov I., Partitions of groups into sparse subsets, Algebra Discrete Math. 13, 1 (2012), no. 1, 107–110. Zbl1258.20036MR2963828
- Protasov I., 10.1007/s10958-011-0314-x, J. Math. Sciences 174 (2011), 486–514. Zbl1283.20029MR2768154DOI10.1007/s10958-011-0314-x
- Protasov I.V., Asymptotically scattered spaces, preprint available at arXiv:1212.0364.
- Protasov I.V., Combinatorial derivation, Appl. Gen. Topology, to appear; preprint available at arXiv:1210.0696. MR3116152
- Protasov I.V., Slobodianiuk S., Thin subsets of groups, Ukrainian Math. J.(to appear). MR3176453
- Protasov I., Zarichnyi M., General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007. MR2406623
- Roe J., Lectures on Coarse Geometry, American Mathematical Society, Providence RI, 2003. Zbl1042.53027MR2007488
- Solecki S., 10.1007/s00039-005-0505-z, Geom. Funct. Analysis 15 (2005), 246–273. MR2140632DOI10.1007/s00039-005-0505-z
- Todorcevic S., Introduction to Ramsey Spaces, Princeton University Press, Princeton, 2010. MR2603812
- Zakrzewski P., 10.1007/s11253-012-0647-8, Ukrainian Math. J. 64 (2012), 306–308. MR3104766DOI10.1007/s11253-012-0647-8
- Zelenyuk Y., Ultrafilters and Topologies on Groups, de Gruyter Expositions in Mathematics, 50, Walter de Gruyter, Berlin, 2011. Zbl1215.22001MR2768144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.