Displaying similar documents to “Ultracompanions of subsets of a group”

Topologies on groups determined by right cancellable ultrafilters

Igor V. Protasov (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every discrete group G , the Stone-Čech compactification β G of G has a natural structure of a compact right topological semigroup. An ultrafilter p G * , where G * = β G G , is called right cancellable if, given any q , r G * , q p = r p implies q = r . For every right cancellable ultrafilter p G * , we denote by G ( p ) the group G endowed with the strongest left invariant topology in which p converges to the identity of G . For any countable group G and any right cancellable ultrafilters p , q G * , we show that G ( p ) is homeomorphic to G ( q ) if...

Diagonals and discrete subsets of squares

Dennis Burke, Vladimir Vladimirovich Tkachuk (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In 2008 Juhász and Szentmiklóssy established that for every compact space X there exists a discrete D X × X with | D | = d ( X ) . We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf Σ -space X and hence X ω is d -separable. We give an example of a countably compact space X such that X ω is not d -separable. On the other hand, we show that for any Lindelöf p -space X there exists a discrete subset D X × X such that Δ = { ( x , x ) : x X } D ¯ ; in particular, the diagonal Δ is a retract of...

Weak extent in normal spaces

Ronnie Levy, Mikhail Matveev (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

If X is a space, then the we ( X ) of X is the cardinal min { α : If 𝒰 is an open cover of X , then there exists A X such that | A | = α and St ( A , 𝒰 ) = X } . In this note, we show that if X is a normal space such that | X | = 𝔠 and we ( X ) = ω , then X does not have a closed discrete subset of cardinality 𝔠 . We show that this result cannot be strengthened in ZFC to get that the extent of X is smaller than 𝔠 , even if the condition that we ( X ) = ω is replaced by the stronger condition that X is separable.