A symplectic representation of E 7

Tevian Dray; Corinne A. Manogue; Robert A. Wilson

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 3, page 387-399
  • ISSN: 0010-2628

Abstract

top
We explicitly construct a particular real form of the Lie algebra 𝔢 7 in terms of symplectic matrices over the octonions, thus justifying the identifications 𝔢 7 𝔰𝔭 ( 6 , 𝕆 ) and, at the group level, E 7 Sp ( 6 , 𝕆 ) . Along the way, we provide a geometric description of the minimal representation of 𝔢 7 in terms of rank 3 objects called cubies.

How to cite

top

Dray, Tevian, Manogue, Corinne A., and Wilson, Robert A.. "A symplectic representation of $E_7$." Commentationes Mathematicae Universitatis Carolinae 55.3 (2014): 387-399. <http://eudml.org/doc/261873>.

@article{Dray2014,
abstract = {We explicitly construct a particular real form of the Lie algebra $\mathfrak \{e\}_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak \{e\}_7\cong \mathfrak \{sp\}(6,\mathbb \{O\})$ and, at the group level, $E_7\cong \text\{Sp\}(6,\mathbb \{O\})$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak \{e\}_7$ in terms of rank 3 objects called cubies.},
author = {Dray, Tevian, Manogue, Corinne A., Wilson, Robert A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {exceptional Lie algebras; octonions; $E_7$; exceptional algebra; Freudenthal-Tits magic square; symplectic matrices; octonions; },
language = {eng},
number = {3},
pages = {387-399},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A symplectic representation of $E_7$},
url = {http://eudml.org/doc/261873},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Dray, Tevian
AU - Manogue, Corinne A.
AU - Wilson, Robert A.
TI - A symplectic representation of $E_7$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 3
SP - 387
EP - 399
AB - We explicitly construct a particular real form of the Lie algebra $\mathfrak {e}_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak {e}_7\cong \mathfrak {sp}(6,\mathbb {O})$ and, at the group level, $E_7\cong \text{Sp}(6,\mathbb {O})$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak {e}_7$ in terms of rank 3 objects called cubies.
LA - eng
KW - exceptional Lie algebras; octonions; $E_7$; exceptional algebra; Freudenthal-Tits magic square; symplectic matrices; octonions;
UR - http://eudml.org/doc/261873
ER -

References

top
  1. Freudenthal H., 10.1016/0001-8708(65)90038-1, Adv. Math. 1 (1964), 145–190. Zbl0125.10003MR0170974DOI10.1016/0001-8708(65)90038-1
  2. Tits J., 10.1016/S1385-7258(66)50028-2, Indag. Math. 28 (1966), 223–237. Zbl0139.03204MR0219578DOI10.1016/S1385-7258(66)50028-2
  3. Dray T., Manogue C.A., Octonions and the structure of E 6 , Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR2682473
  4. Manogue C.A., Dray T., Octonions, E 6 , and particle physics, J. Phys.: Conference Series 254 (2010), 012005. 
  5. Sudbery A., Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A17 (1984), 939–955. Zbl0544.22010MR0743176
  6. Barton C.H., Sudbery A., 10.1016/S0001-8708(03)00015-X, Adv. Math. 180 (2003), 596–647. Zbl1077.17011MR2020553DOI10.1016/S0001-8708(03)00015-X
  7. Freudenthal H., Beziehungen der E 7 und E 8 zur Oktavenebene, I, Proc. Kon. Ned. Akad. Wet. A57 (1954), 218–230. Zbl0055.02001MR0063358
  8. Brown R.B., Groups of type E 7 , J. Reine Angew. Math. 236 (1969), 79–102. MR0248185
  9. Wilson R.A., 10.1090/S0002-9939-2013-11838-1, Proc. Amer. Math. Soc. 142 (2014), 867–880. MR3148521DOI10.1090/S0002-9939-2013-11838-1
  10. Manogue C.A., Schray J., 10.1063/1.530056, J. Math. Phys. 34 (1993), 3746–3767. Zbl0797.53075MR1230549DOI10.1063/1.530056
  11. Kincaid J., Dray T., Division algebra representations of S O ( 4 , 2 ) , arXiv: 1312.7391. 
  12. Kincaid J.J., Division algebra representations of S O ( 4 , 2 ) , Master's thesis, Oregon State University, 2012, available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682. 
  13. Dray T., Huerta J., Kincaid J., The 2 × 2 Lie group magic square, in preparation. 
  14. Röhrle G., 10.1090/conm/153/01310, Contemp. Math. 153 (1993), 143–155. Zbl0832.20071MR1247502DOI10.1090/conm/153/01310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.