A symplectic representation of
Tevian Dray; Corinne A. Manogue; Robert A. Wilson
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 3, page 387-399
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDray, Tevian, Manogue, Corinne A., and Wilson, Robert A.. "A symplectic representation of $E_7$." Commentationes Mathematicae Universitatis Carolinae 55.3 (2014): 387-399. <http://eudml.org/doc/261873>.
@article{Dray2014,
abstract = {We explicitly construct a particular real form of the Lie algebra $\mathfrak \{e\}_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak \{e\}_7\cong \mathfrak \{sp\}(6,\mathbb \{O\})$ and, at the group level, $E_7\cong \text\{Sp\}(6,\mathbb \{O\})$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak \{e\}_7$ in terms of rank 3 objects called cubies.},
author = {Dray, Tevian, Manogue, Corinne A., Wilson, Robert A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {exceptional Lie algebras; octonions; $E_7$; exceptional algebra; Freudenthal-Tits magic square; symplectic matrices; octonions; },
language = {eng},
number = {3},
pages = {387-399},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A symplectic representation of $E_7$},
url = {http://eudml.org/doc/261873},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Dray, Tevian
AU - Manogue, Corinne A.
AU - Wilson, Robert A.
TI - A symplectic representation of $E_7$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 3
SP - 387
EP - 399
AB - We explicitly construct a particular real form of the Lie algebra $\mathfrak {e}_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak {e}_7\cong \mathfrak {sp}(6,\mathbb {O})$ and, at the group level, $E_7\cong \text{Sp}(6,\mathbb {O})$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak {e}_7$ in terms of rank 3 objects called cubies.
LA - eng
KW - exceptional Lie algebras; octonions; $E_7$; exceptional algebra; Freudenthal-Tits magic square; symplectic matrices; octonions;
UR - http://eudml.org/doc/261873
ER -
References
top- Freudenthal H., 10.1016/0001-8708(65)90038-1, Adv. Math. 1 (1964), 145–190. Zbl0125.10003MR0170974DOI10.1016/0001-8708(65)90038-1
- Tits J., 10.1016/S1385-7258(66)50028-2, Indag. Math. 28 (1966), 223–237. Zbl0139.03204MR0219578DOI10.1016/S1385-7258(66)50028-2
- Dray T., Manogue C.A., Octonions and the structure of , Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR2682473
- Manogue C.A., Dray T., Octonions, , and particle physics, J. Phys.: Conference Series 254 (2010), 012005.
- Sudbery A., Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A17 (1984), 939–955. Zbl0544.22010MR0743176
- Barton C.H., Sudbery A., 10.1016/S0001-8708(03)00015-X, Adv. Math. 180 (2003), 596–647. Zbl1077.17011MR2020553DOI10.1016/S0001-8708(03)00015-X
- Freudenthal H., Beziehungen der und zur Oktavenebene, I, Proc. Kon. Ned. Akad. Wet. A57 (1954), 218–230. Zbl0055.02001MR0063358
- Brown R.B., Groups of type , J. Reine Angew. Math. 236 (1969), 79–102. MR0248185
- Wilson R.A., 10.1090/S0002-9939-2013-11838-1, Proc. Amer. Math. Soc. 142 (2014), 867–880. MR3148521DOI10.1090/S0002-9939-2013-11838-1
- Manogue C.A., Schray J., 10.1063/1.530056, J. Math. Phys. 34 (1993), 3746–3767. Zbl0797.53075MR1230549DOI10.1063/1.530056
- Kincaid J., Dray T., Division algebra representations of , arXiv: 1312.7391.
- Kincaid J.J., Division algebra representations of , Master's thesis, Oregon State University, 2012, available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682.
- Dray T., Huerta J., Kincaid J., The Lie group magic square, in preparation.
- Röhrle G., 10.1090/conm/153/01310, Contemp. Math. 153 (1993), 143–155. Zbl0832.20071MR1247502DOI10.1090/conm/153/01310
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.