Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators
Andrey Andreev; Milena Racheva
Applications of Mathematics (2014)
- Volume: 59, Issue: 4, page 371-390
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAndreev, Andrey, and Racheva, Milena. "Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators." Applications of Mathematics 59.4 (2014): 371-390. <http://eudml.org/doc/261879>.
@article{Andreev2014,
abstract = {This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which give at least asymptotically lower bounds of the exact eigenvalues. We present some new numerical experiments for the plate bending problem on a rectangular domain. The main result is that if we know an estimate from below by nonconforming FEM, then by using a postprocessing procedure we can obtain two-sided bounds of the first (essential) eigenvalue. For the other eigenvalues $\lambda _l$, $l = 2,3,\ldots $, we prove and give conditions when this method is applicable. Finally, the numerical results presented and discussed in the paper illustrate the efficiency of our method.},
author = {Andreev, Andrey, Racheva, Milena},
journal = {Applications of Mathematics},
keywords = {eigenvalue problem; nonconforming finite element method; conforming finite element method; postprocessing; lower bound; eigenvalue problem; nonconforming finite element method; conforming finite element method; postprocessing; lower bound; two-sided bounds; fourth-order problems; numerical experiments; plate bending},
language = {eng},
number = {4},
pages = {371-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators},
url = {http://eudml.org/doc/261879},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Andreev, Andrey
AU - Racheva, Milena
TI - Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 371
EP - 390
AB - This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which give at least asymptotically lower bounds of the exact eigenvalues. We present some new numerical experiments for the plate bending problem on a rectangular domain. The main result is that if we know an estimate from below by nonconforming FEM, then by using a postprocessing procedure we can obtain two-sided bounds of the first (essential) eigenvalue. For the other eigenvalues $\lambda _l$, $l = 2,3,\ldots $, we prove and give conditions when this method is applicable. Finally, the numerical results presented and discussed in the paper illustrate the efficiency of our method.
LA - eng
KW - eigenvalue problem; nonconforming finite element method; conforming finite element method; postprocessing; lower bound; eigenvalue problem; nonconforming finite element method; conforming finite element method; postprocessing; lower bound; two-sided bounds; fourth-order problems; numerical experiments; plate bending
UR - http://eudml.org/doc/261879
ER -
References
top- Adini, A., Clough, R., Analysis of Plate Bending by the Finite Element Method, NSF Report G. 7337 (1961). (1961)
- Andreev, A. B., Lazarov, R. D., Racheva, M. R., 10.1016/j.cam.2004.12.015, J. Comput. Appl. Math. 182 (2005), 333-349. (2005) MR2147872DOI10.1016/j.cam.2004.12.015
- Andreev, A. B., Racheva, M. R., Superconvergent FE postprocessing for eigenfunctions, C. R. Acad. Bulg. Sci. 55 (2002), 17-22. (2002) Zbl1007.65087MR1885694
- Andreev, A. B., Racheva, M. R., Lower bounds for eigenvalues by nonconforming FEM on convex domain, Application of Mathematics in Technical and Natural Sciences Proceedings of the 2nd international conference, Sozopol, Bulgaria, 2010. AIP Conf. Proc. 1301 Amer. Inst. Phys., Melville (2010), 361-369 M. Todorov et al. (2010), 361-369. (2010) Zbl1232.35105MR2810107
- Andreev, A. B., Racheva, M. R., Properties and estimates of an integral type nonconforming finite element, Large-Scale Scientific Computing 8th international conference, LSSC 2011, Sozopol, Bulgaria, 2011. Lecture Notes in Computer Science 7116, 2012, pp. 252-532 Springer, Berlin I. Lirkov et al. MR2955161
- Andreev, A. B., Racheva, M. R., Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM, Sib. Zh. Vychisl. Mat. 15 235-249 (2012), Russian Numer. Analysis Appl. 5 (2012), 191-203. (2012) Zbl1299.35217
- Andreev, A. B., Racheva, M. R., Tsanev, G. S., A Nonconforming Finite Element with Integral Type Bubble Function, Proceedings of 5th Annual Meeting of the BG. Section of SIAM'10 (2010), 3-6. (2010)
- Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. (electronic only) 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
- Babuška, I., Kellogg, R. B., Pitkäranta, J., 10.1007/BF01399326, Numer. Math. 33 (1979), 447-471. (1979) Zbl0423.65057MR0553353DOI10.1007/BF01399326
- Babuška, I., Osborn, J., Eigenvalue problems, Handbook of Numerical Analysis, Vol. II: Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland, Amsterdam (1991), 641-787. (1991) MR1115240
- Brenner, S. C., Scott, R. L., 10.1007/978-1-4757-4338-8_7, Texts in Applied Mathematics 15 Springer, New York (1994). (1994) Zbl0804.65101MR1278258DOI10.1007/978-1-4757-4338-8_7
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Ciarlet, P. G., Basic error estimates for elliptic problems, Handbook of Numerical Analysis. Vol. II: Finite Element Methods (Part 1) P. G. Ciarlet et al. North-Holland, Amsterdam (1991). (1991) Zbl0875.65086MR1115237
- Crouzeix, M., Raviart, P. A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-75. (1973) MR0343661
- Forsythe, G. E., 10.2140/pjm.1955.5.691, Pac. J. Math. 5 (1955), 691-702. (1955) Zbl0068.10304MR0073048DOI10.2140/pjm.1955.5.691
- Grisvard, P., Singularities in Boundary Problems, MASSON and Springer, Berlin (1985). (1985)
- Huang, H. T., Li, Z. C., Lin, Q., 10.1016/j.cam.2007.06.011, J. Comput. Appl. Math. 217 (2008), 9-27. (2008) Zbl1147.65090MR2427427DOI10.1016/j.cam.2007.06.011
- Lascaux, P., Lesaint, P., Some nonconforming finite elements for the plate bending problem, Rev. Franc. Automat. Inform. Rech. Operat. , Analyse numer. R-1 9-53 (1975). (1975) Zbl0319.73042MR0423968
- Lin, Q., Lin, J. F., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing (2006). (2006)
- Lin, Q., Huang, H. T., Li, Z. C., 10.1090/S0025-5718-08-02098-X, Math. Comput. 77 (2008), 2061-2084. (2008) Zbl1198.65228MR2429874DOI10.1090/S0025-5718-08-02098-X
- Lin, Q., Tobiska, L., Zhou, A., 10.1093/imanum/drh008, IMA J. Numer. Anal. 25 (2005), 160-181. (2005) Zbl1068.65122MR2110239DOI10.1093/imanum/drh008
- Lin, Q., Xie, H., The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Math. Pract. Theory 42 (2012), 219-226 Chinese. (2012) Zbl1289.65251MR3013284
- Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
- Lin, Q., Xie, H., Xu, J., Lower bounds of the discretization for piecewise polynomials, http://arxiv.org/abs/1106.4395 (2011). (2011) MR3120579
- Liu, H. P., Yan, N. N., Four finite element solutions and comparison of problem for the Poisson equation eigenvalue, Chin. J. Numer. Math. Appl. 27 27-39 (2005), 81-91. (2005) Zbl1106.65327MR2159418
- Luo, F., Lin, Q., Xie, H., 10.1007/s11425-012-4382-2, Sci. China, Math. 55 (2012), 1069-1082. (2012) Zbl1261.65112MR2912496DOI10.1007/s11425-012-4382-2
- Morley, L. S. D., 10.1017/S0001925900004546, Aero. Quart. 19 (1968), 149-169. (1968) DOI10.1017/S0001925900004546
- Nicaise, S., 10.1137/S0036142903437787, SIAM J. Numer. Anal. (electronic) 43 (2005), 1481-1503. (2005) Zbl1103.65110MR2182137DOI10.1137/S0036142903437787
- Racheva, M. R., Andreev, A. B., 10.2478/cmam-2002-0011, Comput. Methods Appl. Math. 2 (2002), 171-185. (2002) Zbl1012.65113MR1930846DOI10.2478/cmam-2002-0011
- Rannacher, R., 10.1007/BF01396493, Numer. Math. 33 (1979), 23-42. (1979) Zbl0394.65035MR0545740DOI10.1007/BF01396493
- Rannacher, R., Turek, S., 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97-111. (1992) Zbl0742.76051MR1148797DOI10.1002/num.1690080202
- Shi, Z.-C., On the error estimates of Morley element, Math. Numer. Sin. Chinese 12 (1990), 113-118 translation in Chinese J. Numer. Math. Appl. 12 (1990), 102-108. (1990) Zbl0850.73337MR1070298
- Strang, G., Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation Prentice-Hall, Englewood Cliffs (1973). (1973) Zbl0356.65096MR0443377
- Wang, M., Shi, Z.-C., Xu, J., Some -rectangle nonconforming elements for fourth order elliptic equations, J. Comput. Math. 25 (2007), 408-420. (2007) Zbl1142.65451MR2337403
- Wang, L., Wu, Y., Xie, X., 10.1002/num.21723, Numer. Methods Partial Differ. Equations 29 (2013), 721-737. (2013) MR3039784DOI10.1002/num.21723
- Xu, J., Zhou, A., 10.1090/S0025-5718-99-01180-1, Math. Comput. 70 (2001), 17-25. (2001) Zbl0959.65119MR1677419DOI10.1090/S0025-5718-99-01180-1
- Yang, Y. D., A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math. 18 (2000), 413-418. (2000) Zbl0957.65092MR1773912
- Yang, Y. D., Zhang, Z. M., Lin, F. B., 10.1007/s11425-009-0198-0, Sci. China, Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
- Zhang, H. Q., Wang, M., The Mathematical Theory of Finite Elements, Science Press, Beijing (1991). (1991)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.