A note on the Cahn-Hilliard equation in involving critical exponent
Jan W. Cholewa; Aníbal Rodríguez-Bernal
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 269-283
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topCholewa, Jan W., and Rodríguez-Bernal, Aníbal. "A note on the Cahn-Hilliard equation in $H^1(\mathbb {R}^N)$ involving critical exponent." Mathematica Bohemica 139.2 (2014): 269-283. <http://eudml.org/doc/261884>.
@article{Cholewa2014,
abstract = {We consider the Cahn-Hilliard equation in $H^1(\mathbb \{R\}^N)$ with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as $|u|\rightarrow \infty $ and logistic type nonlinearities. In both situations we prove the $H^2(\mathbb \{R\}^N)$-bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).},
author = {Cholewa, Jan W., Rodríguez-Bernal, Aníbal},
journal = {Mathematica Bohemica},
keywords = {initial value problem for higher order parabolic equations; asymptotic behavior of solutions; critical exponent; initial value problem for higher order parabolic equations; asymptotic behavior of solutions; critical exponent},
language = {eng},
number = {2},
pages = {269-283},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the Cahn-Hilliard equation in $H^1(\mathbb \{R\}^N)$ involving critical exponent},
url = {http://eudml.org/doc/261884},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Cholewa, Jan W.
AU - Rodríguez-Bernal, Aníbal
TI - A note on the Cahn-Hilliard equation in $H^1(\mathbb {R}^N)$ involving critical exponent
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 269
EP - 283
AB - We consider the Cahn-Hilliard equation in $H^1(\mathbb {R}^N)$ with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as $|u|\rightarrow \infty $ and logistic type nonlinearities. In both situations we prove the $H^2(\mathbb {R}^N)$-bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).
LA - eng
KW - initial value problem for higher order parabolic equations; asymptotic behavior of solutions; critical exponent; initial value problem for higher order parabolic equations; asymptotic behavior of solutions; critical exponent
UR - http://eudml.org/doc/261884
ER -
References
top- Arrieta, J. M., Carvalho, A. N., Rodríguez-Bernal, A., 10.1006/jdeq.1998.3612, J. Differ. Equations 156 (1999), 376-406. (1999) Zbl0938.35077MR1705387DOI10.1006/jdeq.1998.3612
- Arrieta, J. M., Cholewa, J. W., Dlotko, T., Rodríguez-Bernal, A., 10.1016/j.na.2003.09.023, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 515-554. (2004) Zbl1058.35102MR2035325DOI10.1016/j.na.2003.09.023
- Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T., 10.1142/S0218202504003234, Math. Models Methods Appl. Sci. 14 (2004), 253-293. (2004) Zbl1058.35076MR2040897DOI10.1142/S0218202504003234
- Blömker, D., Maier-Paape, S., Wanner, T., 10.1007/PL00005585, Commun. Math. Phys. 223 (2001), 553-582. (2001) Zbl0993.60061MR1866167DOI10.1007/PL00005585
- Blömker, D., Maier-Paape, S., Wanner, T., 10.1090/S0002-9947-07-04387-5, Trans. Am. Math. Soc. 360 (2008), 449-489. (2008) Zbl1130.60066MR2342011DOI10.1090/S0002-9947-07-04387-5
- Bonfoh, A., 10.1090/S0033-569X-06-00988-3, Q. Appl. Math. 64 (2006), 93-104. (2006) Zbl1115.35025MR2211379DOI10.1090/S0033-569X-06-00988-3
- Bricmont, J., Kupiainen, A., Taskinen, J., 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I, Commun. Pure Appl. Math. 52 (1999), 839-871. (1999) Zbl0939.35022MR1682804DOI10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I
- Caffarelli, L. A., Muler, N. E., 10.1007/BF00376814, Arch. Ration. Mech. Anal. 133 (1995), 129-144. (1995) MR1367359DOI10.1007/BF00376814
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) DOI10.1063/1.1744102
- Carvalho, A. N., Cholewa, J. W., 10.1016/j.jmaa.2005.02.024, J. Math. Anal. Appl. 310 (2005), 557-578. (2005) Zbl1077.35031MR2022944DOI10.1016/j.jmaa.2005.02.024
- Carvalho, A. N., Dlotko, T., 10.1016/j.jmaa.2008.03.020, J. Math. Anal. Appl. 344 (2008), 703-725. (2008) Zbl1151.35008MR2426301DOI10.1016/j.jmaa.2008.03.020
- Cholewa, J. W., Dlotko, T., 10.1017/S0004972700016348, Bull. Aust. Math. Soc. 49 (1994), 277-292. (1994) Zbl0803.35013MR1265364DOI10.1017/S0004972700016348
- Cholewa, J. W., Dlotko, T., Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series 278 Cambridge University Press, Cambridge (2000). (2000) Zbl0954.35002MR1778284
- Cholewa, J. W., Rodriguez-Bernal, A., 10.1016/j.na.2012.01.011, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 3510-3530. (2012) MR2901334DOI10.1016/j.na.2012.01.011
- Cholewa, J. W., Rodriguez-Bernal, A., 10.1016/j.jde.2012.08.033, J. Differ. Equations 253 (2012), 3678-3726. (2012) MR2981268DOI10.1016/j.jde.2012.08.033
- Cholewa, J. W., Rodriguez-Bernal, A., 10.1016/j.na.2014.03.013, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104 (2014), 50-74. (2014) Zbl1288.35281MR3196888DOI10.1016/j.na.2014.03.013
- Dlotko, T., Kania, M. B., Sun, C., 10.1016/j.jde.2011.08.052, J. Differ. Equations 252 (2012), 2771-2791. (2012) MR2860640DOI10.1016/j.jde.2011.08.052
- Duan, L., Liu, S., Zhao, H., 10.1016/j.jmaa.2010.06.009, J. Math. Anal. Appl. 372 (2010), 666-678. (2010) Zbl1203.35040MR2678892DOI10.1016/j.jmaa.2010.06.009
- Elliott, C. M., Stuart, A. M., Viscous Cahn-Hilliard equation II: Analysis, J. Differ. Equations 128 (1996), 387-414. (1996) Zbl0855.35067MR1398327
- Eyre, D. J., Systems of Cahn-Hilliard Equations, University of Minnesota, AHPCRC Preprint 92-102, 1992. Zbl0853.73060MR1247174
- Grasselli, M., Schimperna, G., Zelik, S., 10.1088/0951-7715/23/3/016, Nonlinearity 23 (2010), 707-737. (2010) Zbl1198.35038MR2593916DOI10.1088/0951-7715/23/3/016
- Hale, J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25 American Mathematical Society, Providence (1988). (1988) Zbl0642.58013MR0941371
- Henry, D., 10.1007/BFb0089647, Lecture Notes in Mathematics 840 Springer, Berlin (1981). (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- Kato, T., 10.1007/BF00280740, Arch. Ration. Mech. Anal. 58 (1975), 181-205. (1975) Zbl0343.35056MR0390516DOI10.1007/BF00280740
- Korvola, T., Kupiainen, A., Taskinen, J., 10.1002/cpa.20055, Commun. Pure Appl. Math. 58 (2005), 1077-1115. (2005) Zbl1078.35049MR2143527DOI10.1002/cpa.20055
- Li, D., Zhong, C., 10.1006/jdeq.1998.3429, J. Differ. Equations 149 (1998), 191-210. (1998) Zbl0912.35029MR1646238DOI10.1006/jdeq.1998.3429
- Liu, S., Wang, F., Zhao, H., 10.1016/j.jde.2007.02.014, J. Differ. Equations 238 (2007), 426-469. (2007) Zbl1120.35044MR2341432DOI10.1016/j.jde.2007.02.014
- Miranville, A., Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal., Real World Appl. 2 (2001), 273-304. (2001) Zbl0989.35066MR1835609
- Miranville, A., Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput. 1 (2011), 523-536. (2011) Zbl1304.35342MR2889956
- Novick-Cohen, A., On the viscous Cahn-Hilliard equation, Material instabilities in continuum mechanics. Proc. Symp., Heriot-Watt University, Edinburgh, 1985/86 J. M. Ball Oxford Science Publications Clarendon Press, Oxford 329-342 (1988). (1988) Zbl0632.76119MR0970531
- Novick-Cohen, A., The Cahn-Hilliard equation, Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 201-228. (2008) Zbl1185.35001MR2508166
- Temam, R., 10.1007/978-1-4684-0313-8, Applied Mathematical Sciences 68 Springer, New York (1988). (1988) Zbl0662.35001MR0953967DOI10.1007/978-1-4684-0313-8
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library 18 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0387.46033MR0503903
- Zelik, S., Pennant, J., Global well-posedness in uniformly local spaces for the Cahn-Hilliard equations in , Commun. Pure Appl. Anal. 12 (2013), 461-480. (2013) MR2972440
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.