Page 1 Next

Displaying 1 – 20 of 53

Showing per page

A free boundary problem for a predator-prey model with nonlinear prey-taxis

Mohsen Yousefnezhad, Seyyed Abbas Mohammadi, Farid Bozorgnia (2018)

Applications of Mathematics

This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary...

A note on the Cahn-Hilliard equation in H 1 ( N ) involving critical exponent

Jan W. Cholewa, Aníbal Rodríguez-Bernal (2014)

Mathematica Bohemica

We consider the Cahn-Hilliard equation in H 1 ( N ) with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as | u | and logistic type nonlinearities. In both situations we prove the H 2 ( N ) -bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).

Applications of approximate gradient schemes for nonlinear parabolic equations

Robert Eymard, Angela Handlovičová, Raphaèle Herbin, Karol Mikula, Olga Stašová (2015)

Applications of Mathematics

We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion...

Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source

Ji Liu, Jia-Shan Zheng (2015)

Czechoslovak Mathematical Journal

We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).

Comparison of explicit and implicit difference methods for quasilinear functional differential equations

W. Czernous, Z. Kamont (2011)

Applicationes Mathematicae

We give a theorem on error estimates of approximate solutions for explicit and implicit difference functional equations with unknown functions of several variables. We apply this general result to investigate the stability of difference methods for quasilinear functional differential equations with initial boundary condition of Dirichlet type. We consider first order partial functional differential equations and parabolic functional differential problems. We compare the properties of explicit...

Compétition Réaction-Diffusion et comportement asymptotique d’un problème d’obstacle doublement non linéaire

Fahd Karami (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Le but de cet article est l’étude de la compétition Réaction-Diffusion pour un problème de type β ( w ) t - d ε div a ( x , D w ) + r ε g x , β ( w ) = f , a est un opérateur de Lerray-Lions, β est une fonction continue croissante et la réaction g est une fonction croissante qui dépend de l’espace x . On suppose que les coefficients de diffusion d ε et de Réaction r ε dépendent du paramètre ε avec d ε et/ou r ε tends vers + lorsque ε 0 . Dans le cas où, le coefficient de réaction est très rapide, nous étudions le comportement asymptotique lorsque t de la solution...

Determination of a diffusion coefficient in a quasilinear parabolic equation

Fatma Kanca (2017)

Open Mathematics

This paper investigates the inverse problem of finding the time-dependent diffusion coefficient in a quasilinear parabolic equation with the nonlocal boundary and integral overdetermination conditions. Under some natural regularity and consistency conditions on the input data the existence, uniqueness and continuously dependence upon the data of the solution are shown. Finally, some numerical experiments are presented.

Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities

Y. Akdim, J. Bennouna, M. Mekkour, H. Redwane (2012)

Applicationes Mathematicae

We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), b ( x , u ) | t = 0 = b ( x , u ) in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in L ¹ ( Q ) + L p ' ( 0 , T ; W - 1 , p ' ( Ω ) ) and b(x,u₀) ∈ L¹(Ω).

Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions

Sahbi Boussandel (2018)

Applications of Mathematics

The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet p -Laplace operator.

Currently displaying 1 – 20 of 53

Page 1 Next