On the change of energy caused by crack propagation in 3-dimensional anisotropic solids
Martin Steigemann; Maria Specovius-Neugebauer
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 401-416
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSteigemann, Martin, and Specovius-Neugebauer, Maria. "On the change of energy caused by crack propagation in 3-dimensional anisotropic solids." Mathematica Bohemica 139.2 (2014): 401-416. <http://eudml.org/doc/261892>.
@article{Steigemann2014,
abstract = {Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a small crack extension.},
author = {Steigemann, Martin, Specovius-Neugebauer, Maria},
journal = {Mathematica Bohemica},
keywords = {crack propagation; energy principle; stress intensity factor; crack propagation; energy principle; stress intensity factor},
language = {eng},
number = {2},
pages = {401-416},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the change of energy caused by crack propagation in 3-dimensional anisotropic solids},
url = {http://eudml.org/doc/261892},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Steigemann, Martin
AU - Specovius-Neugebauer, Maria
TI - On the change of energy caused by crack propagation in 3-dimensional anisotropic solids
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 401
EP - 416
AB - Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a small crack extension.
LA - eng
KW - crack propagation; energy principle; stress intensity factor; crack propagation; energy principle; stress intensity factor
UR - http://eudml.org/doc/261892
ER -
References
top- Argatov, I. I., Nazarov, S. A., 10.1016/S0021-8928(02)00059-X, J. Appl. Math. Mech. 66 (2002), 491-503. (2002) MR1937462DOI10.1016/S0021-8928(02)00059-X
- Bach, M., Nazarov, S. A., Wendland, W. L., Stable propagation of a mode-1 planar crack in an isotropic elastic space. Comparison of the Irwin and the Griffth approaches, Problemi attuali dell'analisi e della fisica matematica P. E. Ricci Dipartimento di Matematica, Univ. di Roma (2000), 167-189. (2000) MR1809025
- Bourdin, B., Francfort, G. A., Marigo, J.-J., 10.1016/S0022-5096(99)00028-9, J. Mech. Phys. Solids 48 (2000), 797-826. (2000) Zbl0995.74057MR1745759DOI10.1016/S0022-5096(99)00028-9
- Ciarlet, P. G., An introduction to differential geometry with applications to elasticity, J. Elasticity 78-79 (2005), 1-215. (2005) Zbl1086.74001MR2196098
- Costabel, M., Dauge, M., 10.1017/S0308210500021272, Proc. R. Soc. Edinb., Sect. A 123 (1993), 109-155. (1993) Zbl0791.35032MR1204855DOI10.1017/S0308210500021272
- Costabel, M., Dauge, M., 10.1017/S0308210500021284, Proc. R. Soc. Edinb., Sect. A 123 (1993), 157-184. (1993) Zbl0791.35033MR1204855DOI10.1017/S0308210500021284
- Costabel, M., Dauge, M., 10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6, Math. Nachr. 235 (2002), 29-49. (2002) Zbl1094.35038MR1889276DOI10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6
- Costabel, M., Dauge, M., Yosibash, Z., 10.1137/S0036141002404863, SIAM J. Math. Anal. 35 (2004), 1177-1202. (2004) Zbl1141.35363MR2050197DOI10.1137/S0036141002404863
- Dauge, M., Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341 Springer, Berlin (1988). (1988) Zbl0668.35001MR0961439
- Lorenzi, H. G. de, 10.1007/BF00017129, Int. J. Fract. 19 (1982), 183-193. (1982) DOI10.1007/BF00017129
- Favier, E., Lazarus, V., Leblond, J.-B., 10.1016/j.ijsolstr.2005.06.041, Int. J. Solids Struct. 43 (2006), 2091-2109. (2006) Zbl1121.74449DOI10.1016/j.ijsolstr.2005.06.041
- Griffith, A. A., 10.1098/rsta.1921.0006, Philos. Trans. Roy. Soc. London 221 (1921), 163-198. (1921) DOI10.1098/rsta.1921.0006
- Hartranft, R. J., Sih, G. C., 10.1016/0013-7944(77)90083-2, Engineering Fracture Mechanics 9 (1977), 705-718. (1977) DOI10.1016/0013-7944(77)90083-2
- Il'in, A. M., 10.1090/mmono/102, Translated from the Russian. Translations of Mathematical Monographs 102 American Mathematical Society, Providence (1992). (1992) Zbl0754.34002MR1182791DOI10.1090/mmono/102
- Irwin, G., Fracture, Handbuch der Physik. Bd. 6: Elastizität und Plastizität S. Flügge Springer, Berlin 551-590 (1958). (1958) MR0094946
- Kondrat'ev, V. A., Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Mosc. Math. Soc. 16 (1967), 227-313. (1967) MR0226187
- Kozlov, V. A., Maz'ya, V. G., Rossmann, J., Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs 52 American Mathematical Society, Providence (1997). (1997) Zbl0947.35004MR1469972
- Kühnel, W., Differential Geometry. Curves--Surfaces--Manifolds. Translated from the German, Student Mathematical Library 16 American Mathematical Society, Providence (2002). (2002) MR1882174
- Lazarus, V., 10.1023/B:FRAC.0000005373.73286.5d, Int. J. Fract. 122 (2003), 23-46. (2003) DOI10.1023/B:FRAC.0000005373.73286.5d
- Leblond, J.-B., Torlai, O., 10.1007/BF00044514, J. Elasticity 29 (1992), 97-131. (1992) Zbl0777.73054DOI10.1007/BF00044514
- Maz'ya, V. G., Plamenevsky, B. A., The coefficients in the asymptotic of the solutions of elliptic boundary-value problems in domains with conical points, Russian Math. Nachr. 76 (1977), 29-60. (1977)
- Maz'ya, V. G., Rossmann, J., 10.1002/mana.19881380103, German Math. Nachr. 138 (1988), 27-53. (1988) Zbl0672.35020MR0975198DOI10.1002/mana.19881380103
- Nazarov, S. A., 10.1007/s10808-005-0088-3, J. Appl. Mech. Techn. Phys. 46 (2005), 386-394. (2005) Zbl1088.74025MR2144814DOI10.1007/s10808-005-0088-3
- Nazarov, S. A., Plamenevsky, B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics 13 Walter de Gruyter, Berlin (1994). (1994) Zbl0806.35001MR1283387
- Nazarov, S. A., Polyakova, O. R., Rupture criteria, asymptotic conditions at crack tips, and selfadjoint extensions of the Lamé operator, Russian Tr. Mosk. Mat. Obs. 57 (1996), 16-74. (1996) MR1468975
- Parks, D. M., 10.1007/BF00155252, Int. J. Fract. 10 (1974), 487-502. (1974) DOI10.1007/BF00155252
- Sih, G. C., Paris, P. C., Irwin, G. R., On cracks in rectilinearly anisotropic bodies, Int. J. Fract. 1 (1965), 189-203. (1965)
- Steigemann, M., Verallgemeinerte Eigenfunktionen und lokale Integralcharakteristiken bei quasi-statischer Rissausbreitung in anisotropen Materialien, German Berichte aus der Mathematik Shaker, Aachen (2009). (2009) Zbl1181.35286
- Williams, M. L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech. 19 (1952), 526-528. (1952)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.