On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 341-352
  • ISSN: 0862-7959

Abstract

top
We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with Dirichlet boundary condition in Ω and the corresponding Robin eigenvalue for positive values of α for every k = 1 , 2 , .

How to cite

top

Filinovskiy, Alexey. "On the eigenvalues of a Robin problem with a large parameter." Mathematica Bohemica 139.2 (2014): 341-352. <http://eudml.org/doc/261924>.

@article{Filinovskiy2014,
abstract = {We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, $\{\partial u\}/\{\partial \nu \}+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb \{R\}^n$, $n \ge 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1^\{\prime \}(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $.},
author = {Filinovskiy, Alexey},
journal = {Mathematica Bohemica},
keywords = {Laplace operator; Robin boundary condition; eigenvalue; large parameter; Laplace operator; Robin boundary condition; eigenvalues; large parameter},
language = {eng},
number = {2},
pages = {341-352},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the eigenvalues of a Robin problem with a large parameter},
url = {http://eudml.org/doc/261924},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Filinovskiy, Alexey
TI - On the eigenvalues of a Robin problem with a large parameter
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 341
EP - 352
AB - We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, ${\partial u}/{\partial \nu }+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb {R}^n$, $n \ge 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1^{\prime }(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $.
LA - eng
KW - Laplace operator; Robin boundary condition; eigenvalue; large parameter; Laplace operator; Robin boundary condition; eigenvalues; large parameter
UR - http://eudml.org/doc/261924
ER -

References

top
  1. Bandle, C., Sperb, R. P., 10.1007/BF01597075, Z. Angew. Math. Phys. 24 (1973), 709-720. (1973) MR0338535DOI10.1007/BF01597075
  2. Courant, R., Hilbert, D., Methoden der mathematischen Physik I, German Springer, Berlin (1968). (1968) Zbl0156.23201MR0344038
  3. Daners, D., Kennedy, J. B., On the asymptotic behaviour of the eigenvalues of a Robin problem, Differ. Integral Equ. 23 (2010), 659-669. (2010) Zbl1240.35370MR2654263
  4. Filinovskiy, A. V., 10.1134/S0012266111110152, On the seminar on qualitative theory of differential equations at Moscow State University, Differ. Equ. 47 (2011), 1680-1696. DOI:10.1134/S0012266111110152. (2011) DOI10.1134/S0012266111110152
  5. Giorgi, T., Smits, R. G., 10.1215/ijm/1258138130, Ill. J. Math. 49 (2005), 1133-1143. (2005) Zbl1089.35038MR2210355DOI10.1215/ijm/1258138130
  6. Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, Basel (2006). (2006) Zbl1109.35081MR2251558
  7. Kato, T., Perturbation Theory for Linear Operators, Springer, Berlin (1995). (1995) Zbl0836.47009MR1335452
  8. Kondrat'ev, V. A., Landis, E. M., Qualitative theory of second order linear partial differential equations, Russian Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 32 (1988), 99-215. (1988) Zbl0656.35012MR1133457
  9. Lacey, A. A., Ockendon, J. R., Sabina, J., 10.1137/S0036139996308121, SIAM J. Appl. Math. 58 (1998), 1622-1647. (1998) Zbl0932.35120MR1637882DOI10.1137/S0036139996308121
  10. Lou, Y., Zhu, M., 10.2140/pjm.2004.214.323, Pac. J. Math. 214 (2004), 323-334. (2004) Zbl1061.35061MR2042936DOI10.2140/pjm.2004.214.323
  11. Mikhaĭlov, V. P., Partial Differential Equations, Russian Nauka, Moskva (1983). (1983) 
  12. Sperb, R. P., 10.1007/BF01593087, German Z. Angew. Math. Phys. 23 (1972), 231-244. (1972) Zbl0246.73072MR0312800DOI10.1007/BF01593087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.