On the eigenvalues of a Robin problem with a large parameter
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 341-352
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFilinovskiy, Alexey. "On the eigenvalues of a Robin problem with a large parameter." Mathematica Bohemica 139.2 (2014): 341-352. <http://eudml.org/doc/261924>.
@article{Filinovskiy2014,
abstract = {We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, $\{\partial u\}/\{\partial \nu \}+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb \{R\}^n$, $n \ge 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1^\{\prime \}(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $.},
author = {Filinovskiy, Alexey},
journal = {Mathematica Bohemica},
keywords = {Laplace operator; Robin boundary condition; eigenvalue; large parameter; Laplace operator; Robin boundary condition; eigenvalues; large parameter},
language = {eng},
number = {2},
pages = {341-352},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the eigenvalues of a Robin problem with a large parameter},
url = {http://eudml.org/doc/261924},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Filinovskiy, Alexey
TI - On the eigenvalues of a Robin problem with a large parameter
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 341
EP - 352
AB - We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, ${\partial u}/{\partial \nu }+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb {R}^n$, $n \ge 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1^{\prime }(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $.
LA - eng
KW - Laplace operator; Robin boundary condition; eigenvalue; large parameter; Laplace operator; Robin boundary condition; eigenvalues; large parameter
UR - http://eudml.org/doc/261924
ER -
References
top- Bandle, C., Sperb, R. P., 10.1007/BF01597075, Z. Angew. Math. Phys. 24 (1973), 709-720. (1973) MR0338535DOI10.1007/BF01597075
- Courant, R., Hilbert, D., Methoden der mathematischen Physik I, German Springer, Berlin (1968). (1968) Zbl0156.23201MR0344038
- Daners, D., Kennedy, J. B., On the asymptotic behaviour of the eigenvalues of a Robin problem, Differ. Integral Equ. 23 (2010), 659-669. (2010) Zbl1240.35370MR2654263
- Filinovskiy, A. V., 10.1134/S0012266111110152, On the seminar on qualitative theory of differential equations at Moscow State University, Differ. Equ. 47 (2011), 1680-1696. DOI:10.1134/S0012266111110152. (2011) DOI10.1134/S0012266111110152
- Giorgi, T., Smits, R. G., 10.1215/ijm/1258138130, Ill. J. Math. 49 (2005), 1133-1143. (2005) Zbl1089.35038MR2210355DOI10.1215/ijm/1258138130
- Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, Basel (2006). (2006) Zbl1109.35081MR2251558
- Kato, T., Perturbation Theory for Linear Operators, Springer, Berlin (1995). (1995) Zbl0836.47009MR1335452
- Kondrat'ev, V. A., Landis, E. M., Qualitative theory of second order linear partial differential equations, Russian Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 32 (1988), 99-215. (1988) Zbl0656.35012MR1133457
- Lacey, A. A., Ockendon, J. R., Sabina, J., 10.1137/S0036139996308121, SIAM J. Appl. Math. 58 (1998), 1622-1647. (1998) Zbl0932.35120MR1637882DOI10.1137/S0036139996308121
- Lou, Y., Zhu, M., 10.2140/pjm.2004.214.323, Pac. J. Math. 214 (2004), 323-334. (2004) Zbl1061.35061MR2042936DOI10.2140/pjm.2004.214.323
- Mikhaĭlov, V. P., Partial Differential Equations, Russian Nauka, Moskva (1983). (1983)
- Sperb, R. P., 10.1007/BF01593087, German Z. Angew. Math. Phys. 23 (1972), 231-244. (1972) Zbl0246.73072MR0312800DOI10.1007/BF01593087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.