Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 45-64
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topDragomir, Silvestru S.. "Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 45-64. <http://eudml.org/doc/261953>.
@article{Dragomir2014,
abstract = {We say that the function $f\colon [a,b] \rightarrow \mathbb \{R\}$ is under the chord if \begin\{equation*\} \frac\{\left( b-t\right) f(a) +\left( t-a\right) f(b) \}\{b-a\}\ge f(t) \end\{equation*\}
for any $t\in [a,b] $. In this paper we proved amongst other that \begin\{equation*\} \int \_\{a\}^\{b\}u(t) df(t) \ge \frac\{f(b) -f(a) \}\{b-a\}\int \_\{a\}^\{b\}u(t) dt \end\{equation*\}
provided that $u\colon [ a,b] \rightarrow \mathbb \{R\}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb \{R\}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.},
author = {Dragomir, Silvestru S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Fejér inequality; functions of bounded variation; monotonic functions; total variation; selfadjoint operators; Fejér inequality; functions of bounded variation; monotonic functions; total variation; self-adjoint operators},
language = {eng},
number = {1},
pages = {45-64},
publisher = {Palacký University Olomouc},
title = {Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications},
url = {http://eudml.org/doc/261953},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Dragomir, Silvestru S.
TI - Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 45
EP - 64
AB - We say that the function $f\colon [a,b] \rightarrow \mathbb {R}$ is under the chord if \begin{equation*} \frac{\left( b-t\right) f(a) +\left( t-a\right) f(b) }{b-a}\ge f(t) \end{equation*}
for any $t\in [a,b] $. In this paper we proved amongst other that \begin{equation*} \int _{a}^{b}u(t) df(t) \ge \frac{f(b) -f(a) }{b-a}\int _{a}^{b}u(t) dt \end{equation*}
provided that $u\colon [ a,b] \rightarrow \mathbb {R}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb {R}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.
LA - eng
KW - Fejér inequality; functions of bounded variation; monotonic functions; total variation; selfadjoint operators; Fejér inequality; functions of bounded variation; monotonic functions; total variation; self-adjoint operators
UR - http://eudml.org/doc/261953
ER -
References
top- Azpeitia, A. G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28, 1 (1994), 7–12. (1994) Zbl0832.26015MR1304041
- Beckenbach, E. F., Bellman, R., Inequalities, 4th Edition, Springer-Verlag, Berlin, 1983. (1983) Zbl0513.26003MR0192009
- Cerone, P., Dragomir, S. S., Roumeliotis, J., Šunde, J., A new generalization of the trapezoid formula for -time differentiable mappings and applications, Demonstratio Math. 33, 4 (2000), 719–736. (2000) Zbl0974.26010MR1807637
- Dragomir, S. S., A mapping in connection to Hadamard’s inequalities, An. Öster. Akad. Wiss. Math.-Natur. (Wien) 128 (1991), 17–20, MR 934:26032. ZBL No. 747:26015. (1991) Zbl0747.26015MR1188722
- Dragomir, S. S., 10.1016/0022-247X(92)90233-4, J. Math. Anal. Appl. 167 (1992), 49–56, MR:934:26038, ZBL No. 758:26014. (1992) Zbl0758.26014MR1165255DOI10.1016/0022-247X(92)90233-4
- Dragomir, S. S., On Hadamard’s inequalities for convex functions, Mat. Balkanica 6 (1992), 215–222, MR: 934:26033. (1992) Zbl0834.26010MR1183627
- Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3, 3 (2002), Article 35, 1–8. (2002) Zbl0995.26009MR1917794
- Dragomir, S. S., Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math. 26 (2004), 89–122. (2004) Zbl1274.26035MR2126003
- Dragomir, S. S., 10.1017/S000497270004051X, Bull. Austral. Math. Soc. 74, 3 (2006), 471–476. (2006) MR2273755DOI10.1017/S000497270004051X
- Dragomir, S. S., 10.1016/j.aml.2006.02.027, Appl. Math. Lett. 20 (2007), 123–130. (2007) Zbl1116.26004MR2283898DOI10.1016/j.aml.2006.02.027
- Dragomir, S. S., Gomm, I., Some applications of Fejér’s inequality for convex functions (I), Austral. J. Math. Anal. Appl. 10, 1 (2013), Article 9, 1–11. (2013) Zbl1264.26025MR3056059
- Dragomir, S. S., Milošević, D. S., Sándor, J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24. (1993) Zbl0813.26005MR1220829
- Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, [online] http://rgmia.org/monographs/hermite_hadamard.html. (2000)
- Dragomir, S. S., Pearce, C. E. M., 10.7153/jmi-03-59, J. Math. Inequal. 3, 4 (2009), 607–616. (2009) Zbl1182.26047MR2599159DOI10.7153/jmi-03-59
- Féjer, L., Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 369–390, (in Hungarian). (1906)
- Guessab, A., Schmeisser, G., 10.1006/jath.2001.3658, J. Approx. Theory 115, 2 (2002), 260–288. (2002) Zbl1012.26013MR1901217DOI10.1006/jath.2001.3658
- Helmberg, G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New York, 1969. (1969) Zbl0177.42401MR0243367
- Kikianty, E., Dragomir, S. S., Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13, 1 (2010), 1–32. (2010) Zbl1183.26025MR2648227
- Merkle, M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. (1999) Zbl0946.26016MR1710976
- Mercer, P. R., 10.1016/j.jmaa.2008.03.026, J. Math. Anal. Applic. 344 (2008), 921–926. (2008) Zbl1147.26013MR2426320DOI10.1016/j.jmaa.2008.03.026
- Mitrinović, D. S., Lacković, I. B., 10.1007/BF02189414, Aequationes Math. 28 (1985), 229–232. (1985) Zbl0572.26004MR0791622DOI10.1007/BF02189414
- Pearce, C. E. M., Rubinov, A. M., 10.1006/jmaa.1999.6593, J. Math. Anal. Appl. 240, 1 (1999), 92–104. (1999) Zbl0939.26009MR1728202DOI10.1006/jmaa.1999.6593
- Pečarić, J., Vukelić, A., Hadamard and Dragomir–Agarwal inequalities, the Euler formulae and convex functions, Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, 105–137. (2003) Zbl1067.26021MR2042560
- Pečarić, J., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., San Diego, 1992. (1992) Zbl0749.26004MR1162312
- Toader, G., Superadditivity and Hermite-Hadamard’s inequalities, Studia Univ. Babeş-Bolyai Math. 39, 2 (1994), 27–32. (1994) Zbl0868.26012MR1434748
- Yand, G.-S., Hong, M.-C., A note on Hadamard’s inequality, Tamkang J. Math. 28, 1 (1997), 33–37. (1997)
- Yand, G.-S., Tseng, K.-L., 10.1006/jmaa.1999.6506, J. Math. Anal. Appl. 239, 1 (1999), 180–187. (1999) MR1719056DOI10.1006/jmaa.1999.6506
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.