Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications

Silvestru S. Dragomir

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 45-64
  • ISSN: 0231-9721

Abstract

top
We say that the function f : [ a , b ] is under the chord if b - t f ( a ) + t - a f ( b ) b - a f ( t ) for any t [ a , b ] . In this paper we proved amongst other that a b u ( t ) d f ( t ) f ( b ) - f ( a ) b - a a b u ( t ) d t provided that u : [ a , b ] is monotonic nondecreasing and f : [ a , b ] is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.

How to cite

top

Dragomir, Silvestru S.. "Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 45-64. <http://eudml.org/doc/261953>.

@article{Dragomir2014,
abstract = {We say that the function $f\colon [a,b] \rightarrow \mathbb \{R\}$ is under the chord if \begin\{equation*\} \frac\{\left( b-t\right) f(a) +\left( t-a\right) f(b) \}\{b-a\}\ge f(t) \end\{equation*\} for any $t\in [a,b] $. In this paper we proved amongst other that \begin\{equation*\} \int \_\{a\}^\{b\}u(t) df(t) \ge \frac\{f(b) -f(a) \}\{b-a\}\int \_\{a\}^\{b\}u(t) dt \end\{equation*\} provided that $u\colon [ a,b] \rightarrow \mathbb \{R\}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb \{R\}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.},
author = {Dragomir, Silvestru S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Fejér inequality; functions of bounded variation; monotonic functions; total variation; selfadjoint operators; Fejér inequality; functions of bounded variation; monotonic functions; total variation; self-adjoint operators},
language = {eng},
number = {1},
pages = {45-64},
publisher = {Palacký University Olomouc},
title = {Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications},
url = {http://eudml.org/doc/261953},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Dragomir, Silvestru S.
TI - Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 45
EP - 64
AB - We say that the function $f\colon [a,b] \rightarrow \mathbb {R}$ is under the chord if \begin{equation*} \frac{\left( b-t\right) f(a) +\left( t-a\right) f(b) }{b-a}\ge f(t) \end{equation*} for any $t\in [a,b] $. In this paper we proved amongst other that \begin{equation*} \int _{a}^{b}u(t) df(t) \ge \frac{f(b) -f(a) }{b-a}\int _{a}^{b}u(t) dt \end{equation*} provided that $u\colon [ a,b] \rightarrow \mathbb {R}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb {R}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.
LA - eng
KW - Fejér inequality; functions of bounded variation; monotonic functions; total variation; selfadjoint operators; Fejér inequality; functions of bounded variation; monotonic functions; total variation; self-adjoint operators
UR - http://eudml.org/doc/261953
ER -

References

top
  1. Azpeitia, A. G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28, 1 (1994), 7–12. (1994) Zbl0832.26015MR1304041
  2. Beckenbach, E. F., Bellman, R., Inequalities, 4th Edition, Springer-Verlag, Berlin, 1983. (1983) Zbl0513.26003MR0192009
  3. Cerone, P., Dragomir, S. S., Roumeliotis, J., Šunde, J., A new generalization of the trapezoid formula for n -time differentiable mappings and applications, Demonstratio Math. 33, 4 (2000), 719–736. (2000) Zbl0974.26010MR1807637
  4. Dragomir, S. S., A mapping in connection to Hadamard’s inequalities, An. Öster. Akad. Wiss. Math.-Natur. (Wien) 128 (1991), 17–20, MR 934:26032. ZBL No. 747:26015. (1991) Zbl0747.26015MR1188722
  5. Dragomir, S. S., 10.1016/0022-247X(92)90233-4, J. Math. Anal. Appl. 167 (1992), 49–56, MR:934:26038, ZBL No. 758:26014. (1992) Zbl0758.26014MR1165255DOI10.1016/0022-247X(92)90233-4
  6. Dragomir, S. S., On Hadamard’s inequalities for convex functions, Mat. Balkanica 6 (1992), 215–222, MR: 934:26033. (1992) Zbl0834.26010MR1183627
  7. Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3, 3 (2002), Article 35, 1–8. (2002) Zbl0995.26009MR1917794
  8. Dragomir, S. S., Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math. 26 (2004), 89–122. (2004) Zbl1274.26035MR2126003
  9. Dragomir, S. S., 10.1017/S000497270004051X, Bull. Austral. Math. Soc. 74, 3 (2006), 471–476. (2006) MR2273755DOI10.1017/S000497270004051X
  10. Dragomir, S. S., 10.1016/j.aml.2006.02.027, Appl. Math. Lett. 20 (2007), 123–130. (2007) Zbl1116.26004MR2283898DOI10.1016/j.aml.2006.02.027
  11. Dragomir, S. S., Gomm, I., Some applications of Fejér’s inequality for convex functions (I), Austral. J. Math. Anal. Appl. 10, 1 (2013), Article 9, 1–11. (2013) Zbl1264.26025MR3056059
  12. Dragomir, S. S., Milošević, D. S., Sándor, J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24. (1993) Zbl0813.26005MR1220829
  13. Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, [online] http://rgmia.org/monographs/hermite_hadamard.html. (2000) 
  14. Dragomir, S. S., Pearce, C. E. M., 10.7153/jmi-03-59, J. Math. Inequal. 3, 4 (2009), 607–616. (2009) Zbl1182.26047MR2599159DOI10.7153/jmi-03-59
  15. Féjer, L., Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 369–390, (in Hungarian). (1906) 
  16. Guessab, A., Schmeisser, G., 10.1006/jath.2001.3658, J. Approx. Theory 115, 2 (2002), 260–288. (2002) Zbl1012.26013MR1901217DOI10.1006/jath.2001.3658
  17. Helmberg, G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New York, 1969. (1969) Zbl0177.42401MR0243367
  18. Kikianty, E., Dragomir, S. S., Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13, 1 (2010), 1–32. (2010) Zbl1183.26025MR2648227
  19. Merkle, M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. (1999) Zbl0946.26016MR1710976
  20. Mercer, P. R., 10.1016/j.jmaa.2008.03.026, J. Math. Anal. Applic. 344 (2008), 921–926. (2008) Zbl1147.26013MR2426320DOI10.1016/j.jmaa.2008.03.026
  21. Mitrinović, D. S., Lacković, I. B., 10.1007/BF02189414, Aequationes Math. 28 (1985), 229–232. (1985) Zbl0572.26004MR0791622DOI10.1007/BF02189414
  22. Pearce, C. E. M., Rubinov, A. M., 10.1006/jmaa.1999.6593, J. Math. Anal. Appl. 240, 1 (1999), 92–104. (1999) Zbl0939.26009MR1728202DOI10.1006/jmaa.1999.6593
  23. Pečarić, J., Vukelić, A., Hadamard and Dragomir–Agarwal inequalities, the Euler formulae and convex functions, Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, 105–137. (2003) Zbl1067.26021MR2042560
  24. Pečarić, J., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., San Diego, 1992. (1992) Zbl0749.26004MR1162312
  25. Toader, G., Superadditivity and Hermite-Hadamard’s inequalities, Studia Univ. Babeş-Bolyai Math. 39, 2 (1994), 27–32. (1994) Zbl0868.26012MR1434748
  26. Yand, G.-S., Hong, M.-C., A note on Hadamard’s inequality, Tamkang J. Math. 28, 1 (1997), 33–37. (1997) 
  27. Yand, G.-S., Tseng, K.-L., 10.1006/jmaa.1999.6506, J. Math. Anal. Appl. 239, 1 (1999), 180–187. (1999) MR1719056DOI10.1006/jmaa.1999.6506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.