Double Sequence Spaces Definedby a Sequence of Modulus Functions over -normed Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 117-134
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topSharma, Sunil K., and Esi, Ayhan. "Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 117-134. <http://eudml.org/doc/261955>.
@article{Sharma2014,
abstract = {In the present paper we introduce some double sequence spaces defined by a sequence of modulus function $ F = (f_\{k,l\})$ over $n$-normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.},
author = {Sharma, Sunil K., Esi, Ayhan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {double sequences; $P$-convergent; modulus function; paranorm space; double sequences; -convergent; modulus function; paranormed space},
language = {eng},
number = {1},
pages = {117-134},
publisher = {Palacký University Olomouc},
title = {Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces},
url = {http://eudml.org/doc/261955},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Sharma, Sunil K.
AU - Esi, Ayhan
TI - Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 117
EP - 134
AB - In the present paper we introduce some double sequence spaces defined by a sequence of modulus function $ F = (f_{k,l})$ over $n$-normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.
LA - eng
KW - double sequences; $P$-convergent; modulus function; paranorm space; double sequences; -convergent; modulus function; paranormed space
UR - http://eudml.org/doc/261955
ER -
References
top- Altay, B., Başar, F., 10.1016/j.jmaa.2004.12.020, J. Math. Anal. Appl. 309 (2005), 70–90. (2005) MR2154028DOI10.1016/j.jmaa.2004.12.020
- Altin, Y., 10.1016/S0252-9602(09)60042-4, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), 427–434. (2009) Zbl1199.46019MR2517605DOI10.1016/S0252-9602(09)60042-4
- Altin, Y., Et, M., Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31 (2005), 233–243. (2005) Zbl1085.46501MR2149876
- Altin, Y., Işik, M., Çolak, R., A new sequence space defined by a modulus, Stud. Univ. Babes–Bolyai Math. 53 (2008), 3–13. (2008) Zbl1212.46010MR2440755
- Altinok, H., Altin, Y., Işik, M., The sequence space on seminormed spaces, Indian J. Pure Appl. Math. 39 (2008), 49–58. (2008) Zbl1153.46300MR2413756
- Başarir, M., Sonalcan, O., On some double sequence spaces, J. Indian Acad. Math. 21 (1999), 193–200. (1999) Zbl0978.40002MR1754919
- Başar, F., Sever, Y., The space of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157. (2009) MR2482412
- Bromwich, T. J., An Introduction to the Theory of Infinite Series, Macmillan and co., Ltd., New York, 1965. (1965)
- Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 30 (1989), 194–198. (1989) Zbl0693.40007MR1006746
- Esi, A., Some new sequence spaces defined by a sequence of moduli, Turk. J. Math. 21 (1997), 61–68. (1997) Zbl0914.46005MR1473301
- Esi, A., Strongly -summable double sequence spaces defined by Orlicz function, Int. J. Nonlinear Anal. Appl. 2 (2011), 110–115. (2011) Zbl1281.40003
- Et, M., Çolak, R., On generalized difference sequence spaces, Soochow J. Math. 21, 4 (1995), 377–386. (1995)
- Gähler, S., Linear 2-normietre RumeStatistical convergence in 2-normed spaces, Math. Nachr. 28 (1965), 1–43. Statistical convergence in 2-normed spaces Southeast Asian Bull. Math. 33, 2 (2009), 257–264. (1965)
- Gunawan, H., On -inner product, -norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap. 5 (2001), 47–54. (2001) MR1885776
- Gunawan, H., 10.1017/S0004972700019754, Bull. Aust. Math. Soc. 64 (2001), 137–147. (2001) MR1848086DOI10.1017/S0004972700019754
- Gunawan, H., Mashadi, M., 10.1155/S0161171201010675, Int. J. Math. Math. Sci. 27 (2001), 631–639. (2001) Zbl1006.46006MR1873126DOI10.1155/S0161171201010675
- Hamilton, H. J., 10.1215/S0012-7094-36-00204-1, Duke Math. J. 2 (1936), 29–60. (1936) Zbl0013.30301MR1545904DOI10.1215/S0012-7094-36-00204-1
- Hardy, G. H., On the convergence of certain multiple series, Proc. Camb. Phil., Soc. 19 (1917), 86–95. (1917)
- Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. (1949) Zbl0032.05801MR0030620
- Kizmaz, H., 10.4153/CMB-1981-027-5, Canad. Math. Bull. 24, 2 (1981), 169–176. (1981) MR0619442DOI10.4153/CMB-1981-027-5
- Maddox, I. J., 10.1017/S0305004100065968, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
- Malkowsky, E., Savaş, E., Some -sequence spaces defined by a modulus, Archivum Math. 36 (2000), 219–228. (2000) Zbl1046.40011MR1785040
- Misiak, A., 10.1002/mana.19891400121, Math. Nachr. 140 (1989), 299–319. (1989) Zbl0708.46025MR1015402DOI10.1002/mana.19891400121
- Moricz, F., 10.1007/BF01903811, Acta Math. Hungarica 57 (1991), 129–136. (1991) MR1128849DOI10.1007/BF01903811
- Moricz, F., Rhoades, B. E., 10.1017/S0305004100065464, Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294. (1988) MR0948914DOI10.1017/S0305004100065464
- Mursaleen, M., 10.1016/j.jmaa.2004.01.014, J. Math. Anal. Appl. 293, 2 (2004), 523–531. (2004) Zbl1043.40002MR2053895DOI10.1016/j.jmaa.2004.01.014
- Mursaleen, M., Edely, O. H. H., 10.1016/j.jmaa.2003.08.004, J. Math. Anal. Appl. 288, 1 (2003), 223–231. (2003) Zbl1032.40001MR2019757DOI10.1016/j.jmaa.2003.08.004
- Mursaleen, M., Edely, O. H. H., 10.1016/j.jmaa.2004.01.015, J. Math. Anal. Appl. 293, 2 (2004), 532–540. (2004) Zbl1043.40003MR2053896DOI10.1016/j.jmaa.2004.01.015
- Pringsheim, A., 10.1007/BF01448977, Math. Ann. 53 (1900), 289–321. (1900) MR1511092DOI10.1007/BF01448977
- Raj, K., Sharma, S. K., Difference sequence spaces defined by sequence of modulus function, Proyecciones J. Math. 30 (2011), 189–199. (2011) MR2852349
- Raj, K., Sharma, S. K., Some difference sequence spaces defined by sequence of modulus function, Int. J. Math. Archive 2 (2011), 236–240. (2011)
- Robinson, G. M., 10.1090/S0002-9947-1926-1501332-5, Trans. Amer. Math. Soc. 28 (1926), 50–73. (1926) MR1501332DOI10.1090/S0002-9947-1926-1501332-5
- Savaş, E., On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 30 (1999), 459–464. (1999) Zbl0928.40006MR1694693
- Savaş, E., Patterson, R. F., 10.2478/s12175-011-0009-2, Math. Slovaca 61 (2011), 245–256. (2011) Zbl1265.40029MR2786698DOI10.2478/s12175-011-0009-2
- Tripathy, B. C., Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math. 30 (2004), 431–446. (2004) MR2106062
- Tripathy, B. C., Statistically convergent double sequences, Tamkang J. Math. 34 (2003), 231–237. (2003) Zbl1040.40001MR2001918
- Wilansky, A., Summability through Functional Analysis, 85 North–Holland Math. Stud. 1984. (1984) Zbl0531.40008MR0738632
- Zeltser, M., Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001. (2001) Zbl1087.46004MR1833364
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.