Double Sequence Spaces Definedby a Sequence of Modulus Functions over n -normed Spaces

Sunil K. Sharma; Ayhan Esi

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 117-134
  • ISSN: 0231-9721

Abstract

top
In the present paper we introduce some double sequence spaces defined by a sequence of modulus function F = ( f k , l ) over n -normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.

How to cite

top

Sharma, Sunil K., and Esi, Ayhan. "Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 117-134. <http://eudml.org/doc/261955>.

@article{Sharma2014,
abstract = {In the present paper we introduce some double sequence spaces defined by a sequence of modulus function $ F = (f_\{k,l\})$ over $n$-normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.},
author = {Sharma, Sunil K., Esi, Ayhan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {double sequences; $P$-convergent; modulus function; paranorm space; double sequences; -convergent; modulus function; paranormed space},
language = {eng},
number = {1},
pages = {117-134},
publisher = {Palacký University Olomouc},
title = {Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces},
url = {http://eudml.org/doc/261955},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Sharma, Sunil K.
AU - Esi, Ayhan
TI - Double Sequence Spaces Definedby a Sequence of Modulus Functions over $n$-normed Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 117
EP - 134
AB - In the present paper we introduce some double sequence spaces defined by a sequence of modulus function $ F = (f_{k,l})$ over $n$-normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.
LA - eng
KW - double sequences; $P$-convergent; modulus function; paranorm space; double sequences; -convergent; modulus function; paranormed space
UR - http://eudml.org/doc/261955
ER -

References

top
  1. Altay, B., Başar, F., 10.1016/j.jmaa.2004.12.020, J. Math. Anal. Appl. 309 (2005), 70–90. (2005) MR2154028DOI10.1016/j.jmaa.2004.12.020
  2. Altin, Y., 10.1016/S0252-9602(09)60042-4, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), 427–434. (2009) Zbl1199.46019MR2517605DOI10.1016/S0252-9602(09)60042-4
  3. Altin, Y., Et, M., Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31 (2005), 233–243. (2005) Zbl1085.46501MR2149876
  4. Altin, Y., Işik, M., Çolak, R., A new sequence space defined by a modulus, Stud. Univ. Babes–Bolyai Math. 53 (2008), 3–13. (2008) Zbl1212.46010MR2440755
  5. Altinok, H., Altin, Y., Işik, M., The sequence space B v σ ( M , P , Q , S ) on seminormed spaces, Indian J. Pure Appl. Math. 39 (2008), 49–58. (2008) Zbl1153.46300MR2413756
  6. Başarir, M., Sonalcan, O., On some double sequence spaces, J. Indian Acad. Math. 21 (1999), 193–200. (1999) Zbl0978.40002MR1754919
  7. Başar, F., Sever, Y., The space p of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157. (2009) MR2482412
  8. Bromwich, T. J., An Introduction to the Theory of Infinite Series, Macmillan and co., Ltd., New York, 1965. (1965) 
  9. Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 30 (1989), 194–198. (1989) Zbl0693.40007MR1006746
  10. Esi, A., Some new sequence spaces defined by a sequence of moduli, Turk. J. Math. 21 (1997), 61–68. (1997) Zbl0914.46005MR1473301
  11. Esi, A., Strongly [ V 2 , λ 2 , M , p ] -summable double sequence spaces defined by Orlicz function, Int. J. Nonlinear Anal. Appl. 2 (2011), 110–115. (2011) Zbl1281.40003
  12. Et, M., Çolak, R., On generalized difference sequence spaces, Soochow J. Math. 21, 4 (1995), 377–386. (1995) 
  13. Gähler, S., Linear 2-normietre RumeStatistical convergence in 2-normed spaces, Math. Nachr. 28 (1965), 1–43. Statistical convergence in 2-normed spaces Southeast Asian Bull. Math. 33, 2 (2009), 257–264. (1965) 
  14. Gunawan, H., On n -inner product, n -norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap. 5 (2001), 47–54. (2001) MR1885776
  15. Gunawan, H., 10.1017/S0004972700019754, Bull. Aust. Math. Soc. 64 (2001), 137–147. (2001) MR1848086DOI10.1017/S0004972700019754
  16. Gunawan, H., Mashadi, M., 10.1155/S0161171201010675, Int. J. Math. Math. Sci. 27 (2001), 631–639. (2001) Zbl1006.46006MR1873126DOI10.1155/S0161171201010675
  17. Hamilton, H. J., 10.1215/S0012-7094-36-00204-1, Duke Math. J. 2 (1936), 29–60. (1936) Zbl0013.30301MR1545904DOI10.1215/S0012-7094-36-00204-1
  18. Hardy, G. H., On the convergence of certain multiple series, Proc. Camb. Phil., Soc. 19 (1917), 86–95. (1917) 
  19. Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. (1949) Zbl0032.05801MR0030620
  20. Kizmaz, H., 10.4153/CMB-1981-027-5, Canad. Math. Bull. 24, 2 (1981), 169–176. (1981) MR0619442DOI10.4153/CMB-1981-027-5
  21. Maddox, I. J., 10.1017/S0305004100065968, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
  22. Malkowsky, E., Savaş, E., Some λ -sequence spaces defined by a modulus, Archivum Math. 36 (2000), 219–228. (2000) Zbl1046.40011MR1785040
  23. Misiak, A., 10.1002/mana.19891400121, Math. Nachr. 140 (1989), 299–319. (1989) Zbl0708.46025MR1015402DOI10.1002/mana.19891400121
  24. Moricz, F., 10.1007/BF01903811, Acta Math. Hungarica 57 (1991), 129–136. (1991) MR1128849DOI10.1007/BF01903811
  25. Moricz, F., Rhoades, B. E., 10.1017/S0305004100065464, Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294. (1988) MR0948914DOI10.1017/S0305004100065464
  26. Mursaleen, M., 10.1016/j.jmaa.2004.01.014, J. Math. Anal. Appl. 293, 2 (2004), 523–531. (2004) Zbl1043.40002MR2053895DOI10.1016/j.jmaa.2004.01.014
  27. Mursaleen, M., Edely, O. H. H., 10.1016/j.jmaa.2003.08.004, J. Math. Anal. Appl. 288, 1 (2003), 223–231. (2003) Zbl1032.40001MR2019757DOI10.1016/j.jmaa.2003.08.004
  28. Mursaleen, M., Edely, O. H. H., 10.1016/j.jmaa.2004.01.015, J. Math. Anal. Appl. 293, 2 (2004), 532–540. (2004) Zbl1043.40003MR2053896DOI10.1016/j.jmaa.2004.01.015
  29. Pringsheim, A., 10.1007/BF01448977, Math. Ann. 53 (1900), 289–321. (1900) MR1511092DOI10.1007/BF01448977
  30. Raj, K., Sharma, S. K., Difference sequence spaces defined by sequence of modulus function, Proyecciones J. Math. 30 (2011), 189–199. (2011) MR2852349
  31. Raj, K., Sharma, S. K., Some difference sequence spaces defined by sequence of modulus function, Int. J. Math. Archive 2 (2011), 236–240. (2011) 
  32. Robinson, G. M., 10.1090/S0002-9947-1926-1501332-5, Trans. Amer. Math. Soc. 28 (1926), 50–73. (1926) MR1501332DOI10.1090/S0002-9947-1926-1501332-5
  33. Savaş, E., On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 30 (1999), 459–464. (1999) Zbl0928.40006MR1694693
  34. Savaş, E., Patterson, R. F., 10.2478/s12175-011-0009-2, Math. Slovaca 61 (2011), 245–256. (2011) Zbl1265.40029MR2786698DOI10.2478/s12175-011-0009-2
  35. Tripathy, B. C., Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math. 30 (2004), 431–446. (2004) MR2106062
  36. Tripathy, B. C., Statistically convergent double sequences, Tamkang J. Math. 34 (2003), 231–237. (2003) Zbl1040.40001MR2001918
  37. Wilansky, A., Summability through Functional Analysis, 85 North–Holland Math. Stud. 1984. (1984) Zbl0531.40008MR0738632
  38. Zeltser, M., Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001. (2001) Zbl1087.46004MR1833364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.