Some λ -sequence spaces defined by a modulus

Eberhard Malkowsky; Ekrem Savaş

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 3, page 219-228
  • ISSN: 0044-8753

Abstract

top
The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.

How to cite

top

Malkowsky, Eberhard, and Savaş, Ekrem. "Some $\lambda $-sequence spaces defined by a modulus." Archivum Mathematicum 036.3 (2000): 219-228. <http://eudml.org/doc/248547>.

@article{Malkowsky2000,
abstract = {The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.},
author = {Malkowsky, Eberhard, Savaş, Ekrem},
journal = {Archivum Mathematicum},
keywords = {FK; AK spaces; paranorm; modulus functions; almost convergence; statistical convergence; de la Vallée–Poussin means; FK and AK spaces; paranorm; modulus functions; almost convergence; de la Vallée-Poussin means},
language = {eng},
number = {3},
pages = {219-228},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some $\lambda $-sequence spaces defined by a modulus},
url = {http://eudml.org/doc/248547},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Malkowsky, Eberhard
AU - Savaş, Ekrem
TI - Some $\lambda $-sequence spaces defined by a modulus
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 3
SP - 219
EP - 228
AB - The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.
LA - eng
KW - FK; AK spaces; paranorm; modulus functions; almost convergence; statistical convergence; de la Vallée–Poussin means; FK and AK spaces; paranorm; modulus functions; almost convergence; de la Vallée-Poussin means
UR - http://eudml.org/doc/248547
ER -

References

top
  1. P. Erdös, Tenenbaum, Sur les densities des certaines suites d’entiers, Proc. London Math. Soc (3), 59, (1989), 417–438 (1989) MR1014865
  2. H. Fast, Sur la convergence statistique, Colloq. Math. 2, (1951), 241–244 (1951) Zbl0044.33605MR0048548
  3. I. J. Maddox, On Kuttner’s theorem, J. London Math. Soc. 43, (1968), 285–290 (1968) Zbl0155.38802MR0225044
  4. I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc. 85, (1979), 345–350 (1979) Zbl0417.40007MR0516094
  5. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100, (1986), 161–166 (1986) Zbl0631.46010MR0838663
  6. I. J. Maddox, Inclusions between FK–spaces and Kuttner’s theorem, Math. Proc. Camb. Phil. Soc., 101, (1987), 523–527 (1987) Zbl0631.46009MR0878899
  7. Nakano H., Concave modulus, J. Math. Soc. Japon. 5, (1953), 29-49. (1953) MR0058882
  8. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25, (1973), 973–978 (1973) Zbl0267.46008MR0338731
  9. E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. Pure appl. Math., 30(5), (1999), 459–464 (1999) Zbl0928.40006MR1694693
  10. E. Savas, Strong almost convergence and almost λ –statistical convergence, Hokkaido J. Math. (to appear) Zbl0963.40001MR1795490
  11. A. Wilansky, Functional Analysis, Blaisdell Publishing Company, 1964 (1964) Zbl0136.10603MR0170186
  12. A. Wilansky, Summability through Functional Analysis, North–Holland Mathematical Studies 85, 1984 (1984) Zbl0531.40008MR0738632
  13. A. Zygmund, Trigonometric Series, Second Edition, Cambridge University Press (1979) (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.