The Role of Halaš Identity in Orthomodular Lattices

Ivan Chajda

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 19-24
  • ISSN: 0231-9721

Abstract

top
We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.

How to cite

top

Chajda, Ivan. "The Role of Halaš Identity in Orthomodular Lattices." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 19-24. <http://eudml.org/doc/261957>.

@article{Chajda2014,
abstract = {We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.},
author = {Chajda, Ivan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {ortholattice; orthomodular lattice; antitone involution; principal filter; basic algebra; orthomodular lattices; basic algebras; ortholattices},
language = {eng},
number = {1},
pages = {19-24},
publisher = {Palacký University Olomouc},
title = {The Role of Halaš Identity in Orthomodular Lattices},
url = {http://eudml.org/doc/261957},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Chajda, Ivan
TI - The Role of Halaš Identity in Orthomodular Lattices
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 19
EP - 24
AB - We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.
LA - eng
KW - ortholattice; orthomodular lattice; antitone involution; principal filter; basic algebra; orthomodular lattices; basic algebras; ortholattices
UR - http://eudml.org/doc/261957
ER -

References

top
  1. Beran, L., Orthomodular Lattices – Algebraic Approach, Academia & D. Reidel Publ. Comp, Praha & Dordrecht, 1984. (1984) MR0785005
  2. Chajda, I., Basic algebras and their applications, an overview, In: Proc. of the Salzburg Conference AAA81, Contributions to General Algebra 20, Verlag J. Heyn, Klagenfurt, 2011, 1–10. (2011) MR2908429
  3. Chajda, I., 10.7151/dmgaa.1149, Discuss. Math., General Algebra Appl. 29 (2009), 21–33. (2009) Zbl1194.06005MR2598600DOI10.7151/dmgaa.1149
  4. Chajda, I., Halaš, R., Kühr, J., Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005), 19–33. (2005) Zbl1099.06006MR2160352
  5. Chajda, I., Halaš, R., Kühr, J., 10.1007/s00012-008-2086-9, Algebra Universalis 60 (2009), 63–90. (2009) Zbl1219.06013MR2480632DOI10.1007/s00012-008-2086-9
  6. Chajda, I., Halaš, R., Kühr, J., Semilattice Structures, Heldermann Verlag, Lemgo, Germany, 2007. (2007) Zbl1117.06001MR2326262
  7. Kalmbach, G., Orthomodular Lattices, Academic Press, London–New York, 1983. (1983) Zbl0528.06012MR0716496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.