Horizontal sums of basic algebras
Discussiones Mathematicae - General Algebra and Applications (2009)
- Volume: 29, Issue: 1, page 21-33
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. Zbl1101.06003
- [2] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0.
- [3] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9. Zbl1219.06013
- [4] I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30. Zbl1148.06009
- [5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000. Zbl0987.81005
- [6] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346.
- [7] Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237. Zbl0968.81003
- [8] N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449