Horizontal sums of basic algebras

Ivan Chajda

Discussiones Mathematicae - General Algebra and Applications (2009)

  • Volume: 29, Issue: 1, page 21-33
  • ISSN: 1509-9415

Abstract

top
The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.

How to cite

top

Ivan Chajda. "Horizontal sums of basic algebras." Discussiones Mathematicae - General Algebra and Applications 29.1 (2009): 21-33. <http://eudml.org/doc/276930>.

@article{IvanChajda2009,
abstract = {The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.},
author = {Ivan Chajda},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Basic algebra; horizontal sum; chain basic algebra; MV-algebra; Boolean algebra},
language = {eng},
number = {1},
pages = {21-33},
title = {Horizontal sums of basic algebras},
url = {http://eudml.org/doc/276930},
volume = {29},
year = {2009},
}

TY - JOUR
AU - Ivan Chajda
TI - Horizontal sums of basic algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2009
VL - 29
IS - 1
SP - 21
EP - 33
AB - The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.
LA - eng
KW - Basic algebra; horizontal sum; chain basic algebra; MV-algebra; Boolean algebra
UR - http://eudml.org/doc/276930
ER -

References

top
  1. [1] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585. Zbl1101.06003
  2. [2] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0. 
  3. [3] I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9. Zbl1219.06013
  4. [4] I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30. Zbl1148.06009
  5. [5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000. Zbl0987.81005
  6. [6] D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346. 
  7. [7] Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237. Zbl0968.81003
  8. [8] N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.