New hyper-Käahler structures on tangent bundles

Xuerong Qi; Linfen Cao; Xingxiao Li

Communications in Mathematics (2014)

  • Volume: 22, Issue: 1, page 13-30
  • ISSN: 1804-1388

Abstract

top
Let ( M , g , J ) be an almost Hermitian manifold, then the tangent bundle T M carries a class of naturally defined almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) . In this paper we give conditions under which these almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle T 1 M , we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.

How to cite

top

Qi, Xuerong, Cao, Linfen, and Li, Xingxiao. "New hyper-Käahler structures on tangent bundles." Communications in Mathematics 22.1 (2014): 13-30. <http://eudml.org/doc/261958>.

@article{Qi2014,
abstract = {Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.},
author = {Qi, Xuerong, Cao, Linfen, Li, Xingxiao},
journal = {Communications in Mathematics},
keywords = {tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures; tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures},
language = {eng},
number = {1},
pages = {13-30},
publisher = {University of Ostrava},
title = {New hyper-Käahler structures on tangent bundles},
url = {http://eudml.org/doc/261958},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Qi, Xuerong
AU - Cao, Linfen
AU - Li, Xingxiao
TI - New hyper-Käahler structures on tangent bundles
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 13
EP - 30
AB - Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.
LA - eng
KW - tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures; tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures
UR - http://eudml.org/doc/261958
ER -

References

top
  1. Anastasiei, M., Locally conformal Kähler structures on tangent manifold of a space form, Libertas Math., 19, 1999, 71-76, (1999) MR1726175
  2. Blair, D.E., Riemannian geometry of contact and symplectic manifolds, 2002, Progr. Math. Birkhäuser, Boston, (2002) Zbl1011.53001MR1874240
  3. Bogdanovich, S.A., Ermolitski, A.A., 10.2478/BF02475969, Cent. Eur. J. Math., 2, 5, 2004, 615-623, (2004) MR2172044DOI10.2478/BF02475969
  4. Calabi, E., Métriques kähleriennes et fibrés holomophes, Ann. Sci. École Norm. Sup., 12, 1979, 269-294, (1979) MR0543218
  5. Cheeger, J., Gromoll, D., 10.2307/1970819, Ann. Math., 96, 1972, 413-443, (1972) Zbl0246.53049MR0309010DOI10.2307/1970819
  6. Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math., 210, 1962, 73-88, (1962) Zbl0105.16002MR0141050
  7. Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250, 1971, 124-129, (1971) Zbl0222.53044MR0286028
  8. Li, X.X., Qi, X.R., A note on some metrics on tangent bundles and unit tangent sphere bundles, J. Math. Res. Exposition, 28, 4, 2008, 829-838, (2008) Zbl1199.53056MR2465193
  9. Munteanu, M.I., 10.1007/s00009-008-0135-4, Mediterr. J. Math., 5, 2008, 43-59, (2008) Zbl1177.53022MR2406440DOI10.1007/s00009-008-0135-4
  10. Musso, E., Tricerri, F., 10.1007/BF01761461, Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, (1988) Zbl0658.53045MR0946027DOI10.1007/BF01761461
  11. Nagano, T., Isometries on complex-product spaces, Tensor, 9, 1959, 47-61, (1959) Zbl0092.15003MR0107877
  12. Oproiu, V., 10.1155/S0161171201002009, Int. J. Math. Math. Sci., 25, 2001, 183-195, (2001) Zbl0981.53063MR1812382DOI10.1155/S0161171201002009
  13. Oproiu, V., Hyper-Kähler structures on the tangent bundle of a Kähler manifold, Balkan J. Geom. Appl., 15, 1, 2010, 104-119, (2010) MR2608513
  14. Oproiu, V., Papaghiuc, N., 10.1016/j.difgeo.2008.10.017, Differential Geom. Appl., 27, 2009, 384-392, (2009) Zbl1181.53059MR2521898DOI10.1016/j.difgeo.2008.10.017
  15. Oproiu, V., Poroşniuc, D.D., A class of Kähler Einstein structures on the cotangent bundle, Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, (2005) Zbl1082.53029MR2137782
  16. Ornea, L., Piccinni, P., 10.1090/S0002-9947-97-01591-2, Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, (1997) Zbl0865.53038MR1348155DOI10.1090/S0002-9947-97-01591-2
  17. Poroşniuc, D.D., A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form, Balkan J. Geom. Appl., 9, 2, 2004, 68-81, (2004) Zbl1069.53043MR2205279
  18. Sasaki, S., 10.2748/tmj/1178244668, Tôhoku Math. J., 10, 1958, 338-354, (1958) Zbl0086.15003MR0112152DOI10.2748/tmj/1178244668
  19. Tachibana, S., Okumura, M., 10.2748/tmj/1178244170, Tôhoku Math. J., 14, 2, 1962, 156-161, (1962) Zbl0114.38003MR0143166DOI10.2748/tmj/1178244170
  20. Tahara, M., Vanhecke, L., Watanabe, Y., New structures on tangent bundles, Note Mat., 18, 1, 1998, 131-141, (1998) Zbl0964.53021MR1759021
  21. Vaisman, I., 10.1007/BF02834764, Israel J. Math., 24, 1976, 338-351, (1976) MR0418003DOI10.1007/BF02834764
  22. Zayatuev, B.V., 10.1023/B:MATN.0000049667.15551.02, Math. Notes, 76, 5, 2004, 682-688, (2004) MR2129339DOI10.1023/B:MATN.0000049667.15551.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.