New hyper-Käahler structures on tangent bundles
Xuerong Qi; Linfen Cao; Xingxiao Li
Communications in Mathematics (2014)
- Volume: 22, Issue: 1, page 13-30
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topQi, Xuerong, Cao, Linfen, and Li, Xingxiao. "New hyper-Käahler structures on tangent bundles." Communications in Mathematics 22.1 (2014): 13-30. <http://eudml.org/doc/261958>.
@article{Qi2014,
abstract = {Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.},
author = {Qi, Xuerong, Cao, Linfen, Li, Xingxiao},
journal = {Communications in Mathematics},
keywords = {tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures; tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures},
language = {eng},
number = {1},
pages = {13-30},
publisher = {University of Ostrava},
title = {New hyper-Käahler structures on tangent bundles},
url = {http://eudml.org/doc/261958},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Qi, Xuerong
AU - Cao, Linfen
AU - Li, Xingxiao
TI - New hyper-Käahler structures on tangent bundles
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 13
EP - 30
AB - Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.
LA - eng
KW - tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures; tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures
UR - http://eudml.org/doc/261958
ER -
References
top- Anastasiei, M., Locally conformal Kähler structures on tangent manifold of a space form, Libertas Math., 19, 1999, 71-76, (1999) MR1726175
- Blair, D.E., Riemannian geometry of contact and symplectic manifolds, 2002, Progr. Math. Birkhäuser, Boston, (2002) Zbl1011.53001MR1874240
- Bogdanovich, S.A., Ermolitski, A.A., 10.2478/BF02475969, Cent. Eur. J. Math., 2, 5, 2004, 615-623, (2004) MR2172044DOI10.2478/BF02475969
- Calabi, E., Métriques kähleriennes et fibrés holomophes, Ann. Sci. École Norm. Sup., 12, 1979, 269-294, (1979) MR0543218
- Cheeger, J., Gromoll, D., 10.2307/1970819, Ann. Math., 96, 1972, 413-443, (1972) Zbl0246.53049MR0309010DOI10.2307/1970819
- Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math., 210, 1962, 73-88, (1962) Zbl0105.16002MR0141050
- Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250, 1971, 124-129, (1971) Zbl0222.53044MR0286028
- Li, X.X., Qi, X.R., A note on some metrics on tangent bundles and unit tangent sphere bundles, J. Math. Res. Exposition, 28, 4, 2008, 829-838, (2008) Zbl1199.53056MR2465193
- Munteanu, M.I., 10.1007/s00009-008-0135-4, Mediterr. J. Math., 5, 2008, 43-59, (2008) Zbl1177.53022MR2406440DOI10.1007/s00009-008-0135-4
- Musso, E., Tricerri, F., 10.1007/BF01761461, Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, (1988) Zbl0658.53045MR0946027DOI10.1007/BF01761461
- Nagano, T., Isometries on complex-product spaces, Tensor, 9, 1959, 47-61, (1959) Zbl0092.15003MR0107877
- Oproiu, V., 10.1155/S0161171201002009, Int. J. Math. Math. Sci., 25, 2001, 183-195, (2001) Zbl0981.53063MR1812382DOI10.1155/S0161171201002009
- Oproiu, V., Hyper-Kähler structures on the tangent bundle of a Kähler manifold, Balkan J. Geom. Appl., 15, 1, 2010, 104-119, (2010) MR2608513
- Oproiu, V., Papaghiuc, N., 10.1016/j.difgeo.2008.10.017, Differential Geom. Appl., 27, 2009, 384-392, (2009) Zbl1181.53059MR2521898DOI10.1016/j.difgeo.2008.10.017
- Oproiu, V., Poroşniuc, D.D., A class of Kähler Einstein structures on the cotangent bundle, Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, (2005) Zbl1082.53029MR2137782
- Ornea, L., Piccinni, P., 10.1090/S0002-9947-97-01591-2, Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, (1997) Zbl0865.53038MR1348155DOI10.1090/S0002-9947-97-01591-2
- Poroşniuc, D.D., A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form, Balkan J. Geom. Appl., 9, 2, 2004, 68-81, (2004) Zbl1069.53043MR2205279
- Sasaki, S., 10.2748/tmj/1178244668, Tôhoku Math. J., 10, 1958, 338-354, (1958) Zbl0086.15003MR0112152DOI10.2748/tmj/1178244668
- Tachibana, S., Okumura, M., 10.2748/tmj/1178244170, Tôhoku Math. J., 14, 2, 1962, 156-161, (1962) Zbl0114.38003MR0143166DOI10.2748/tmj/1178244170
- Tahara, M., Vanhecke, L., Watanabe, Y., New structures on tangent bundles, Note Mat., 18, 1, 1998, 131-141, (1998) Zbl0964.53021MR1759021
- Vaisman, I., 10.1007/BF02834764, Israel J. Math., 24, 1976, 338-351, (1976) MR0418003DOI10.1007/BF02834764
- Zayatuev, B.V., 10.1023/B:MATN.0000049667.15551.02, Math. Notes, 76, 5, 2004, 682-688, (2004) MR2129339DOI10.1023/B:MATN.0000049667.15551.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.