The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “New hyper-Käahler structures on tangent bundles”

On a generalized Calabi-Yau equation

Hongyu Wang, Peng Zhu (2010)

Annales de l’institut Fourier

Similarity:

Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension 2 .

Compatible complex structures on twistor space

Guillaume Deschamps (2011)

Annales de l’institut Fourier

Similarity:

Let M be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space Z admits a natural metric. The aim of this article is to study properties of complex structures on Z which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on M (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space Z .

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

Similarity:

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds...

Yang-Mills bar connections over compact Kähler manifolds

Hông Vân Lê (2010)

Archivum Mathematicum

Similarity:

In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections...