Modal Pseudocomplemented De Morgan Algebras
Aldo V. Figallo; Nora Oliva; Alicia Ziliani
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 65-79
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topFigallo, Aldo V., Oliva, Nora, and Ziliani, Alicia. "Modal Pseudocomplemented De Morgan Algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 65-79. <http://eudml.org/doc/261960>.
@article{Figallo2014,
abstract = {Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.},
author = {Figallo, Aldo V., Oliva, Nora, Ziliani, Alicia},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences; pseudocomplemented De Morgan algebras; discriminator variety; topological duality; subdirectly irreducible mpM-algebra},
language = {eng},
number = {1},
pages = {65-79},
publisher = {Palacký University Olomouc},
title = {Modal Pseudocomplemented De Morgan Algebras},
url = {http://eudml.org/doc/261960},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Figallo, Aldo V.
AU - Oliva, Nora
AU - Ziliani, Alicia
TI - Modal Pseudocomplemented De Morgan Algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 65
EP - 79
AB - Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
LA - eng
KW - pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences; pseudocomplemented De Morgan algebras; discriminator variety; topological duality; subdirectly irreducible mpM-algebra
UR - http://eudml.org/doc/261960
ER -
References
top- Adams, M., 10.1017/S0013091500026808, Proc. Edinb. Math. Soc. 30 (1987), 415–421. (1987) Zbl0595.06013MR0908448DOI10.1017/S0013091500026808
- Balbes, R., Dwinger, Ph., Distributive Lattices, Univ. of Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
- Birkhoff, G., Lattice Theory, Amer. Math. Soc., Col. Pub., 25, 3rd ed., Providence, 1967. (1967) Zbl0153.02501MR0227053
- Blok, W., Köler, P., Pigozzi, D., 10.1007/BF01203370, Algebra Universalis 18 (1984), 334–379. (1984) MR0745497DOI10.1007/BF01203370
- Blok, W., Pigozzi, D., 10.1007/BF02483723, Algebra Universalis 15 (1982), 195–227. (1982) Zbl0512.08002MR0686803DOI10.1007/BF02483723
- Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., Łukasiewicz–Moisil Algebras, North–Holland, Amsterdam, 1991. (1991) Zbl0726.06007MR1112790
- Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Graduate Texts in Mathematics, 78, Springer–Verlag, Berlin, 1981. (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3_3
- Cornish, W., Fowler, P., 10.1017/S0004972700022966, Bull. Aust. Math. Soc. 16 (1977), 1–13. (1977) Zbl0329.06005MR0434907DOI10.1017/S0004972700022966
- Figallo, A. V., Tópicos sobre álgebras modales -valuadas, In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992), Notas de Lógica Matemática 39 (1992), 145–157. (1992) MR1332541
- Figallo, A. V., Landini, P., Notes on -valued modal algebras, Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37. (1990)
- Font, J., Rius, M., 10.2307/2586552, J. Symbolic Logic 65 (2000), 481–518. (2000) Zbl1013.03075MR1771068DOI10.2307/2586552
- Fried, E., Pixley, A., The dual discriminator function in universal algebra, Acta Sci. Math. 41 (1979), 83–100. (1979) Zbl0395.08001MR0534502
- Glivenko, V., Sur quelques points de la logique de M. Brouwer, Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188. (1929)
- Grätzer, G., Lakser, H., The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343–358. (1971) Zbl0244.06011MR0274359
- Kalman, J., 10.1090/S0002-9947-1958-0095135-X, Trans. Amer. Math. Soc. 87 (1958), 485–491. (1958) Zbl0228.06003MR0095135DOI10.1090/S0002-9947-1958-0095135-X
- Hecht, T., Katriňák, T., Principal congruences of -algebras and double -algebras, Proc. Amer. Math. Soc. 58 (1976), 25–31. (1976) Zbl0352.06006MR0409293
- Loureiro, I., Axiomatisation et propriétés des algèbres modales tétravalentes, C. R. Math. Acad. Sci. Paris 295, Série I (1982), 555–557. (1982) Zbl0516.03010MR0685023
- Loureiro, I., Algebras Modais Tetravalentes, PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983. (1983)
- Priestley, H. A., 10.1112/blms/2.2.186, Bull. London Math. Soc. 2 (1970), 186–190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
- Priestley, H. A., 10.1112/plms/s3-24.3.507, P. London Math. Soc. 24, 3 (1972), 507–530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
- Priestley, H. A., Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39–60. (1984) Zbl0557.06007MR0779844
- Ribenboim, P., Characterization of the sup-complement in a distributive lattice with last element, Surma Brasil Math. 2 (1949), 43–49. (1949) Zbl0040.01003MR0030931
- Romanowska, A., 10.1007/BF02483864, Algebra Universalis 12 (1981), 70–75. (1981) Zbl0457.06009MR0608649DOI10.1007/BF02483864
- Sankappanavar, H., 10.1002/malq.19860322502, Z. Math. Logik Grundlagen Math. 32 (1986), 385–394. (1986) MR0860024DOI10.1002/malq.19860322502
- Sankappanavar, H., 10.1002/malq.19870330102, Z. Math. Logik Grundlagen Math. 33 (1987), 3–11. (1987) Zbl0624.06016MR0885477DOI10.1002/malq.19870330102
- Varlet, J., Algèbres de Łukasiewicz trivalentes, Bull. Soc. Roy. Liège (1968), 9–10. (1968)
- Werner, H., Discriminator–Algebras, Algebraic representation and modal theoretic properties, Akademie–Verlag, Berlin, 1978. (1978) Zbl0374.08002MR0526402
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.