Modal Pseudocomplemented De Morgan Algebras

Aldo V. Figallo; Nora Oliva; Alicia Ziliani

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 65-79
  • ISSN: 0231-9721

Abstract

top
Modal pseudocomplemented De Morgan algebras (or m p M -algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on 4 -valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying x ( x ) * = ( ( x ( x ) * ) ) * . Firstly, a topological duality for these algebras is described and a characterization of m p M -congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the m p M -congruences, the principal ones are described. In addition, it is proved that the variety of m p M -algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.

How to cite

top

Figallo, Aldo V., Oliva, Nora, and Ziliani, Alicia. "Modal Pseudocomplemented De Morgan Algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 65-79. <http://eudml.org/doc/261960>.

@article{Figallo2014,
abstract = {Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.},
author = {Figallo, Aldo V., Oliva, Nora, Ziliani, Alicia},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences; pseudocomplemented De Morgan algebras; discriminator variety; topological duality; subdirectly irreducible mpM-algebra},
language = {eng},
number = {1},
pages = {65-79},
publisher = {Palacký University Olomouc},
title = {Modal Pseudocomplemented De Morgan Algebras},
url = {http://eudml.org/doc/261960},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Figallo, Aldo V.
AU - Oliva, Nora
AU - Ziliani, Alicia
TI - Modal Pseudocomplemented De Morgan Algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 65
EP - 79
AB - Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
LA - eng
KW - pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences; pseudocomplemented De Morgan algebras; discriminator variety; topological duality; subdirectly irreducible mpM-algebra
UR - http://eudml.org/doc/261960
ER -

References

top
  1. Adams, M., 10.1017/S0013091500026808, Proc. Edinb. Math. Soc. 30 (1987), 415–421. (1987) Zbl0595.06013MR0908448DOI10.1017/S0013091500026808
  2. Balbes, R., Dwinger, Ph., Distributive Lattices, Univ. of Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
  3. Birkhoff, G., Lattice Theory, Amer. Math. Soc., Col. Pub., 25, 3rd ed., Providence, 1967. (1967) Zbl0153.02501MR0227053
  4. Blok, W., Köler, P., Pigozzi, D., 10.1007/BF01203370, Algebra Universalis 18 (1984), 334–379. (1984) MR0745497DOI10.1007/BF01203370
  5. Blok, W., Pigozzi, D., 10.1007/BF02483723, Algebra Universalis 15 (1982), 195–227. (1982) Zbl0512.08002MR0686803DOI10.1007/BF02483723
  6. Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., Łukasiewicz–Moisil Algebras, North–Holland, Amsterdam, 1991. (1991) Zbl0726.06007MR1112790
  7. Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Graduate Texts in Mathematics, 78, Springer–Verlag, Berlin, 1981. (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3_3
  8. Cornish, W., Fowler, P., 10.1017/S0004972700022966, Bull. Aust. Math. Soc. 16 (1977), 1–13. (1977) Zbl0329.06005MR0434907DOI10.1017/S0004972700022966
  9. Figallo, A. V., Tópicos sobre álgebras modales 4 -valuadas, In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992), Notas de Lógica Matemática 39 (1992), 145–157. (1992) MR1332541
  10. Figallo, A. V., Landini, P., Notes on 4 -valued modal algebras, Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37. (1990) 
  11. Font, J., Rius, M., 10.2307/2586552, J. Symbolic Logic 65 (2000), 481–518. (2000) Zbl1013.03075MR1771068DOI10.2307/2586552
  12. Fried, E., Pixley, A., The dual discriminator function in universal algebra, Acta Sci. Math. 41 (1979), 83–100. (1979) Zbl0395.08001MR0534502
  13. Glivenko, V., Sur quelques points de la logique de M. Brouwer, Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188. (1929) 
  14. Grätzer, G., Lakser, H., The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343–358. (1971) Zbl0244.06011MR0274359
  15. Kalman, J., 10.1090/S0002-9947-1958-0095135-X, Trans. Amer. Math. Soc. 87 (1958), 485–491. (1958) Zbl0228.06003MR0095135DOI10.1090/S0002-9947-1958-0095135-X
  16. Hecht, T., Katriňák, T., Principal congruences of p -algebras and double p -algebras, Proc. Amer. Math. Soc. 58 (1976), 25–31. (1976) Zbl0352.06006MR0409293
  17. Loureiro, I., Axiomatisation et propriétés des algèbres modales tétravalentes, C. R. Math. Acad. Sci. Paris 295, Série I (1982), 555–557. (1982) Zbl0516.03010MR0685023
  18. Loureiro, I., Algebras Modais Tetravalentes, PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983. (1983) 
  19. Priestley, H. A., 10.1112/blms/2.2.186, Bull. London Math. Soc. 2 (1970), 186–190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
  20. Priestley, H. A., 10.1112/plms/s3-24.3.507, P. London Math. Soc. 24, 3 (1972), 507–530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
  21. Priestley, H. A., Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39–60. (1984) Zbl0557.06007MR0779844
  22. Ribenboim, P., Characterization of the sup-complement in a distributive lattice with last element, Surma Brasil Math. 2 (1949), 43–49. (1949) Zbl0040.01003MR0030931
  23. Romanowska, A., 10.1007/BF02483864, Algebra Universalis 12 (1981), 70–75. (1981) Zbl0457.06009MR0608649DOI10.1007/BF02483864
  24. Sankappanavar, H., 10.1002/malq.19860322502, Z. Math. Logik Grundlagen Math. 32 (1986), 385–394. (1986) MR0860024DOI10.1002/malq.19860322502
  25. Sankappanavar, H., 10.1002/malq.19870330102, Z. Math. Logik Grundlagen Math. 33 (1987), 3–11. (1987) Zbl0624.06016MR0885477DOI10.1002/malq.19870330102
  26. Varlet, J., Algèbres de Łukasiewicz trivalentes, Bull. Soc. Roy. Liège (1968), 9–10. (1968) 
  27. Werner, H., Discriminator–Algebras, Algebraic representation and modal theoretic properties, Akademie–Verlag, Berlin, 1978. (1978) Zbl0374.08002MR0526402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.