Free Modal Pseudocomplemented De Morgan Algebras

Aldo V. Figallo; Nora Oliva; Alicia Ziliani

Bulletin of the Section of Logic (2018)

  • Volume: 47, Issue: 2
  • ISSN: 0138-0680

Abstract

top
Modal pseudocomplemented De Morgan algebras (or mpM-algebras) were investigated in A. V. Figallo, N. Oliva, A. Ziliani, Modal pseudocomplemented De Morgan algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 53, 1 (2014), pp. 65–79, and they constitute a proper subvariety of the variety of pseudocomplemented De Morgan algebras satisfying xΛ(∼x)* = (∼(xΛ(∼x)*))* studied by H. Sankappanavar in 1987. In this paper the study of these algebras is continued. More precisely, new characterizations of mpM-congruences are shown. In particular, one of them is determined by taking into account an implication operation which is defined on these algebras as weak implication. In addition, the finite mpM-algebras were considered and a factorization theorem of them is given. Finally, the structure of the free finitely generated mpM-algebras is obtained and a formula to compute its cardinal number in terms of the number of the free generators is established. For characterization of the finitely-generated free De Morgan algebras, free Boole-De Morgan algebras and free De Morgan quasilattices see: [16, 17, 18].

How to cite

top

Aldo V. Figallo, Nora Oliva, and Alicia Ziliani. "Free Modal Pseudocomplemented De Morgan Algebras." Bulletin of the Section of Logic 47.2 (2018): null. <http://eudml.org/doc/295580>.

@article{AldoV2018,
abstract = {Modal pseudocomplemented De Morgan algebras (or mpM-algebras) were investigated in A. V. Figallo, N. Oliva, A. Ziliani, Modal pseudocomplemented De Morgan algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 53, 1 (2014), pp. 65–79, and they constitute a proper subvariety of the variety of pseudocomplemented De Morgan algebras satisfying xΛ(∼x)* = (∼(xΛ(∼x)*))* studied by H. Sankappanavar in 1987. In this paper the study of these algebras is continued. More precisely, new characterizations of mpM-congruences are shown. In particular, one of them is determined by taking into account an implication operation which is defined on these algebras as weak implication. In addition, the finite mpM-algebras were considered and a factorization theorem of them is given. Finally, the structure of the free finitely generated mpM-algebras is obtained and a formula to compute its cardinal number in terms of the number of the free generators is established. For characterization of the finitely-generated free De Morgan algebras, free Boole-De Morgan algebras and free De Morgan quasilattices see: [16, 17, 18].},
author = {Aldo V. Figallo, Nora Oliva, Alicia Ziliani},
journal = {Bulletin of the Section of Logic},
keywords = {Pseudocomplemented De Morgan algebras; congruences; free algebras},
language = {eng},
number = {2},
pages = {null},
title = {Free Modal Pseudocomplemented De Morgan Algebras},
url = {http://eudml.org/doc/295580},
volume = {47},
year = {2018},
}

TY - JOUR
AU - Aldo V. Figallo
AU - Nora Oliva
AU - Alicia Ziliani
TI - Free Modal Pseudocomplemented De Morgan Algebras
JO - Bulletin of the Section of Logic
PY - 2018
VL - 47
IS - 2
SP - null
AB - Modal pseudocomplemented De Morgan algebras (or mpM-algebras) were investigated in A. V. Figallo, N. Oliva, A. Ziliani, Modal pseudocomplemented De Morgan algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 53, 1 (2014), pp. 65–79, and they constitute a proper subvariety of the variety of pseudocomplemented De Morgan algebras satisfying xΛ(∼x)* = (∼(xΛ(∼x)*))* studied by H. Sankappanavar in 1987. In this paper the study of these algebras is continued. More precisely, new characterizations of mpM-congruences are shown. In particular, one of them is determined by taking into account an implication operation which is defined on these algebras as weak implication. In addition, the finite mpM-algebras were considered and a factorization theorem of them is given. Finally, the structure of the free finitely generated mpM-algebras is obtained and a formula to compute its cardinal number in terms of the number of the free generators is established. For characterization of the finitely-generated free De Morgan algebras, free Boole-De Morgan algebras and free De Morgan quasilattices see: [16, 17, 18].
LA - eng
KW - Pseudocomplemented De Morgan algebras; congruences; free algebras
UR - http://eudml.org/doc/295580
ER -

References

top
  1. [1] R. Balbes, Ph. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, 1974. Zbl0321.06012, MR0373985. 
  2. [2] G. Birkhoff, Lattice Theory, American Mathematical Society, Col Pub., 25 3rd ed., Providence, 1967. Zbl0153.02501, MR0227053. 
  3. [3] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Łukasiewicz-Moisil Algebras, North-Holland Publishing Co., Amsterdam, 1991. Zbl0726.06007, MR1112790. 
  4. [4] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Vol. 78, Springer-Verlag, Berlin, 1981. Zbl0478.08001, MR0648287. 
  5. [5] A. V. Figallo, Tópicos sobre álgebras modales 4-valuadas, Proceeding of the IX Simposio Latino-Americano de Lógica Matemática, (Bahía Blanca, Argentina, 1992). Notas de Lógica Matemática 39(1992), pp. 145–157. MR1332541. 
  6. [6] A. V. Figallo, P. Landini, Notes on 4-valued modal algebras, Preprints del Instituto de Ciencias Básicas, Universidad Nacional de San Juan 1(1990), pp. 28–37. Zbl0858.03062. 
  7. [7] A. V. Figallo, N, Oliva, A. Ziliani, Modal pseudocomplemented De Morgan algebras, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53, 1(2014), pp. 65–79. MR3331071. 
  8. [8] J. Font, M. Rius, An abstract algebraic logic approach to tetravalent modal logics, Journal of Symbolic Logic 65(2000), pp. 481–518. Zbl1013.03075, MR1771068. 
  9. [9] V. Glivenko, Sur quelques points de la logique de M. Brouwer, Academie Royale de Belgique. Bulletin de la Classe des Sciences 15 (1929), pp. 183–188. Zbl55.0030.05. 
  10. [10] G. Grätzer, H. Lakser, The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation, Transactions of the American Mathematical Society 156 (1971), pp. 343–358. Zbl0244.06011, MR0274359. 
  11. [11] T. Hecht, T. Katriňák, Principal congruences of p-algebras and double p-algebras, Proceedings of the American Mathematical Society 58 (1976), pp. 25–31. Zbl0352.06006, MR0409293. 
  12. [12] J. Kalman, Lattices with involution, Transactions of the American Mathematical Society 87 (1958), pp. 485–491. Zbl0228.06003, MR0095135. 
  13. [13] I. Loureiro, Axiomatisation et propriétés des algèbres modales tétravalentes, Comptes Rendus Mathematique de l’Académie des Sciences Paris 295 (1982), Série I, pp. 555–557. Zbl0516.03010, MR0685023. 
  14. [14] I. Loureiro, Algebras Modais Tetravalentes, PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983. 
  15. [15] A. Monteiro, La sémisimplicité des algèbres de Boole topologiques et les systémes déductifs, Revista de la Unión Matemática Argentina 25 (1975), pp. 417–448. 
  16. [16] Yu. M. Movsisyan, V. A. Aslanyan, Boole–De Morgan Algebras and Quasi–De Morgan Functions, Communications in Algebra 42 (2014), pp. 4757-477, Zbl 1338.06010, MR3210411. 
  17. [17] Yu. M. Movsisyan, V. A. Aslanyan, Super–De Morgan Functions and Free De Morgan Quasilattices, Central European Journal of Mathematics 12 (2014), pp. 1749–1761. Zbl 1346.08004, MR3232637. 
  18. [18] Yu. M. Movsisyan, V. A. Aslanyan, De Morgan Functions and Free De Morgan Algebras, Demonstratio Mathematica 2 (2014), pp. 271–283. 
  19. [19] P. Ribenboim, Characterization of the sup-complement in a distributive lattice with last element, Surma Brasil Mathematics 2 (1949), pp. 43–49. Zbl0040.01003, MR0030931. 
  20. [20] A. Romanowska, Subdirectly irreducible pseudocomplemented De Morgan algebras, Algebra Universalis 12 (1981), pp. 70–75. Zbl0457.06009, MR0608649. 
  21. [21] H. Sankappanavar, Pseudocomplemented Okham and Demorgan algebras, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32 (1986), pp. 385–394. Zbl0612.06009, MR0860024. 
  22. [22] H. Sankappanavar, Principal congruences of pseudocomplemented Demorgan algebras, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 33 (1987), pp. 3–11. Zbl0624.06016, MR0885477. 
  23. [23] J. Varlet, Algèbres de Łukasiewicz trivalentes, Bulletin de la Société Royale des Sciences de Liège, (1968), pp. 9–10. Zbl0175.26604 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.