Pointwise inequalities of logarithmic type in Hardy-Hölder spaces

Slim Chaabane; Imed Feki

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 351-363
  • ISSN: 0011-4642

Abstract

top
We prove some optimal logarithmic estimates in the Hardy space H ( G ) with Hölder regularity, where G is the open unit disk or an annular domain of . These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space H k , of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.

How to cite

top

Chaabane, Slim, and Feki, Imed. "Pointwise inequalities of logarithmic type in Hardy-Hölder spaces." Czechoslovak Mathematical Journal 64.2 (2014): 351-363. <http://eudml.org/doc/261978>.

@article{Chaabane2014,
abstract = {We prove some optimal logarithmic estimates in the Hardy space $\{H\}^\{\infty \}(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb \{C\}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^\{k,\infty \}$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.},
author = {Chaabane, Slim, Feki, Imed},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate; Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate},
language = {eng},
number = {2},
pages = {351-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pointwise inequalities of logarithmic type in Hardy-Hölder spaces},
url = {http://eudml.org/doc/261978},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Chaabane, Slim
AU - Feki, Imed
TI - Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 351
EP - 363
AB - We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
LA - eng
KW - Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate; Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate
UR - http://eudml.org/doc/261978
ER -

References

top
  1. Baratchart, L., Leblond, J., Harmonic identification and Hardy class trace on an arc of the circle, Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. (1993) Zbl0922.93012MR1284961
  2. Baratchart, L., Leblond, J., Partington, J. R., Hardy approximation to L functions on subsets of the circle, Constr. Approx. 12 (1996), 423-435. (1996) MR1405007
  3. Baratchart, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math 46 (1993), 255-269. (1993) MR1222486DOI10.1016/0377-0427(93)90300-Z
  4. Brézis, H., Functional Analysis. Theory and Applications, Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. (1983) MR0697382
  5. Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) MR2554565DOI10.1016/j.crma.2009.07.018
  6. Chaabane, S., Fellah, I., Jaoua, M., Leblond, J., Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl. 20 (2004), 47-59. (2004) Zbl1055.35135MR2044605
  7. Chaabane, S., Ferchichi, J., Kunisch, K., Differentiability properties of the L 1 -tracking functional and application to the Robin inverse problem, Inverse Probl. 20 (2004), 1083-1097. (2004) MR2087981
  8. Chaabane, S., Jaoua, M., Identification of Robin coefficients by the means of boundary measurements, Inverse Probl. 15 (1999), 1425-1438. (1999) Zbl0943.35100MR1733209
  9. Chaabane, S., Jaoua, M., Leblond, J., 10.1515/156939403322004928, J. Inverse Ill-Posed Probl. 11 (2003), 33-57. (2003) Zbl1028.35163MR1972169DOI10.1515/156939403322004928
  10. Chalendar, I., Partington, J. R., Approximation problems and representations of Hardy spaces in circular domains, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247
  11. Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains G , representations of H ( G ) , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) MR0643698
  12. Duren, P. L., Theory of H p Spaces, Pure and Applied Mathematics 38 Academic Press, New York (1970). (1970) MR0268655
  13. Feki, I., 10.1007/s10587-013-0032-2, Czech. Math. J. 63 (2013), 481-495. (2013) Zbl1289.30231MR3073973DOI10.1007/s10587-013-0032-2
  14. Feki, I., Nfata, H., Wielonsky, F., 10.1016/j.jmaa.2012.05.055, J. Math. Anal. Appl. 395 (2012), 366-375. (2012) Zbl1250.30051MR2943628DOI10.1016/j.jmaa.2012.05.055
  15. Gagliardo, E., Proprietà di alcune classi di funzioni più variabili, Ricerche Mat. 7 (1958), 102-137 Italian. (1958) MR0102740
  16. Hardy, G. H., Landau, E., Littlewood, J. E., 10.1007/BF01201386, Math. Z. 39 (1935), 677-695. (1935) Zbl0011.06102MR1545530DOI10.1007/BF01201386
  17. Kwong, M. K., Zettl, A., 10.1007/BFb0090864, Lecture Notes in Mathematics 1536 Springer, Berlin (1992). (1992) Zbl0925.26011MR1223546DOI10.1007/BFb0090864
  18. Leblond, L., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
  19. Marangunić, L. J., Pečarić, J., On Landau type inequalities for functions with Hölder continuous derivatives, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. (2004) Zbl1060.26018MR2084881
  20. Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
  21. Mitrinović, D. S., Pečarić, J. E., Fink, A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). (1991) Zbl0744.26011MR1190927
  22. Niculescu, C. P., Buşe, C., The Hardy-Landau-Littlewood inequalities with less smoothness, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. (2003) Zbl1059.26010MR2044400
  23. Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
  24. Rudin, W., Analytic functions of class H p , Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) MR0067993
  25. Sarason, D., The H p Spaces of An Annulus, Memoirs of the American Mathematical Society 56 AMS, Providence (1965). (1965) MR0188824
  26. Wang, H.-C., 10.1017/S0004972700011515, Bull. Aust. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.