Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 351-363
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChaabane, Slim, and Feki, Imed. "Pointwise inequalities of logarithmic type in Hardy-Hölder spaces." Czechoslovak Mathematical Journal 64.2 (2014): 351-363. <http://eudml.org/doc/261978>.
@article{Chaabane2014,
abstract = {We prove some optimal logarithmic estimates in the Hardy space $\{H\}^\{\infty \}(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb \{C\}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^\{k,\infty \}$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.},
author = {Chaabane, Slim, Feki, Imed},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate; Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate},
language = {eng},
number = {2},
pages = {351-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pointwise inequalities of logarithmic type in Hardy-Hölder spaces},
url = {http://eudml.org/doc/261978},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Chaabane, Slim
AU - Feki, Imed
TI - Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 351
EP - 363
AB - We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
LA - eng
KW - Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate; Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate
UR - http://eudml.org/doc/261978
ER -
References
top- Baratchart, L., Leblond, J., Harmonic identification and Hardy class trace on an arc of the circle, Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. (1993) Zbl0922.93012MR1284961
- Baratchart, L., Leblond, J., Partington, J. R., Hardy approximation to functions on subsets of the circle, Constr. Approx. 12 (1996), 423-435. (1996) MR1405007
- Baratchart, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math 46 (1993), 255-269. (1993) MR1222486DOI10.1016/0377-0427(93)90300-Z
- Brézis, H., Functional Analysis. Theory and Applications, Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. (1983) MR0697382
- Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) MR2554565DOI10.1016/j.crma.2009.07.018
- Chaabane, S., Fellah, I., Jaoua, M., Leblond, J., Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl. 20 (2004), 47-59. (2004) Zbl1055.35135MR2044605
- Chaabane, S., Ferchichi, J., Kunisch, K., Differentiability properties of the -tracking functional and application to the Robin inverse problem, Inverse Probl. 20 (2004), 1083-1097. (2004) MR2087981
- Chaabane, S., Jaoua, M., Identification of Robin coefficients by the means of boundary measurements, Inverse Probl. 15 (1999), 1425-1438. (1999) Zbl0943.35100MR1733209
- Chaabane, S., Jaoua, M., Leblond, J., 10.1515/156939403322004928, J. Inverse Ill-Posed Probl. 11 (2003), 33-57. (2003) Zbl1028.35163MR1972169DOI10.1515/156939403322004928
- Chalendar, I., Partington, J. R., Approximation problems and representations of Hardy spaces in circular domains, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247
- Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains , representations of , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) MR0643698
- Duren, P. L., Theory of Spaces, Pure and Applied Mathematics 38 Academic Press, New York (1970). (1970) MR0268655
- Feki, I., 10.1007/s10587-013-0032-2, Czech. Math. J. 63 (2013), 481-495. (2013) Zbl1289.30231MR3073973DOI10.1007/s10587-013-0032-2
- Feki, I., Nfata, H., Wielonsky, F., 10.1016/j.jmaa.2012.05.055, J. Math. Anal. Appl. 395 (2012), 366-375. (2012) Zbl1250.30051MR2943628DOI10.1016/j.jmaa.2012.05.055
- Gagliardo, E., Proprietà di alcune classi di funzioni più variabili, Ricerche Mat. 7 (1958), 102-137 Italian. (1958) MR0102740
- Hardy, G. H., Landau, E., Littlewood, J. E., 10.1007/BF01201386, Math. Z. 39 (1935), 677-695. (1935) Zbl0011.06102MR1545530DOI10.1007/BF01201386
- Kwong, M. K., Zettl, A., 10.1007/BFb0090864, Lecture Notes in Mathematics 1536 Springer, Berlin (1992). (1992) Zbl0925.26011MR1223546DOI10.1007/BFb0090864
- Leblond, L., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
- Marangunić, L. J., Pečarić, J., On Landau type inequalities for functions with Hölder continuous derivatives, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. (2004) Zbl1060.26018MR2084881
- Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
- Mitrinović, D. S., Pečarić, J. E., Fink, A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). (1991) Zbl0744.26011MR1190927
- Niculescu, C. P., Buşe, C., The Hardy-Landau-Littlewood inequalities with less smoothness, JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. (2003) Zbl1059.26010MR2044400
- Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
- Rudin, W., Analytic functions of class , Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) MR0067993
- Sarason, D., The Spaces of An Annulus, Memoirs of the American Mathematical Society 56 AMS, Providence (1965). (1965) MR0188824
- Wang, H.-C., 10.1017/S0004972700011515, Bull. Aust. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.