Estimates in the Hardy-Sobolev space of the annulus and stability result
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 481-495
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFeki, Imed. "Estimates in the Hardy-Sobolev space of the annulus and stability result." Czechoslovak Mathematical Journal 63.2 (2013): 481-495. <http://eudml.org/doc/260629>.
@article{Feki2013,
abstract = {The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^\{k,\infty \}$; $k \in \{\mathbb \{N\}\}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^\{k,\infty \}$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.},
author = {Feki, Imed},
journal = {Czechoslovak Mathematical Journal},
keywords = {annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter; annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter},
language = {eng},
number = {2},
pages = {481-495},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates in the Hardy-Sobolev space of the annulus and stability result},
url = {http://eudml.org/doc/260629},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Feki, Imed
TI - Estimates in the Hardy-Sobolev space of the annulus and stability result
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 481
EP - 495
AB - The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
LA - eng
KW - annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter; annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
UR - http://eudml.org/doc/260629
ER -
References
top- Alessandrini, G., Piere, L. Del, Rondi, L., Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Probl. 19 (2003), 973-984. (2003) MR2005313
- Baratchard, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math. 46 (1993), 255-269. (1993) Zbl0818.65017MR1222486DOI10.1016/0377-0427(93)90300-Z
- Baratchart, L., Leblond, J., Partington, J. R., Hardy approximation to functions on subsets of the circle, Constructive Approximation 12 (1996), 423-435. (1996) MR1405007
- Brézis, H., Analyse fonctionnelle. Théorie et applications, Masson Paris (1983), French. (1983) MR0697382
- Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) MR2554565DOI10.1016/j.crma.2009.07.018
- Chaabane, S., Jaoua, M., Identification of Robin coefficients by the means of boundary measurements, Inverse Probl. 15 (1999), 1425-1438. (1999) Zbl0943.35100MR1733209
- Chaabane, S., Fellah, I., Jaoua, M., Leblond, J., Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl. 20 (2004), 47-59. (2004) Zbl1055.35135MR2044605
- Chaabane, S., Jaoua, M., Leblond, J., 10.1515/156939403322004928, J. Inverse Ill-Posed Probl. 11 (2003), 33-57. (2003) Zbl1028.35163MR1972169DOI10.1515/156939403322004928
- Chaabane, S., Ferchichi, J., Kunisch, K., Differentiability properties of the -tracking functional and application to the Robin inverse problem, Inverse Probl. 20 (2004), 1083-1097. (2004) MR2087981
- Chalendar, I., Partington, J. R., Approximation problems and representations of Hardy spaces in circular domains, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247
- Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains , representations of , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) MR0643698
- Duren, P. L., Theory of Spaces, Academic Press New York (1970). (1970) MR0268655
- Gaier, D., Pommerenke, C., 10.1307/mmj/1028999660, Mich. Math. J. 14 (1967), 79-82. (1967) Zbl0182.10204MR0204631DOI10.1307/mmj/1028999660
- Leblond, J., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
- Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
- Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
- Rudin, W., Analytic functions of class , Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) MR0067993
- Sarason, D., The Spaces of An Annulus, Mem. Am. Math. Soc. 56 (1965), Providence, RI. (1965) MR0188824
- Wang, H.-C., 10.1017/S0004972700011515, Bull. Austral. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.