Estimates in the Hardy-Sobolev space of the annulus and stability result

Imed Feki

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 481-495
  • ISSN: 0011-4642

Abstract

top
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space H k , ; k * of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces H k , , C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.

How to cite

top

Feki, Imed. "Estimates in the Hardy-Sobolev space of the annulus and stability result." Czechoslovak Mathematical Journal 63.2 (2013): 481-495. <http://eudml.org/doc/260629>.

@article{Feki2013,
abstract = {The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^\{k,\infty \}$; $k \in \{\mathbb \{N\}\}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^\{k,\infty \}$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.},
author = {Feki, Imed},
journal = {Czechoslovak Mathematical Journal},
keywords = {annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter; annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter},
language = {eng},
number = {2},
pages = {481-495},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates in the Hardy-Sobolev space of the annulus and stability result},
url = {http://eudml.org/doc/260629},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Feki, Imed
TI - Estimates in the Hardy-Sobolev space of the annulus and stability result
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 481
EP - 495
AB - The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
LA - eng
KW - annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter; annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
UR - http://eudml.org/doc/260629
ER -

References

top
  1. Alessandrini, G., Piere, L. Del, Rondi, L., Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Probl. 19 (2003), 973-984. (2003) MR2005313
  2. Baratchard, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math. 46 (1993), 255-269. (1993) Zbl0818.65017MR1222486DOI10.1016/0377-0427(93)90300-Z
  3. Baratchart, L., Leblond, J., Partington, J. R., Hardy approximation to L functions on subsets of the circle, Constructive Approximation 12 (1996), 423-435. (1996) MR1405007
  4. Brézis, H., Analyse fonctionnelle. Théorie et applications, Masson Paris (1983), French. (1983) MR0697382
  5. Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) MR2554565DOI10.1016/j.crma.2009.07.018
  6. Chaabane, S., Jaoua, M., Identification of Robin coefficients by the means of boundary measurements, Inverse Probl. 15 (1999), 1425-1438. (1999) Zbl0943.35100MR1733209
  7. Chaabane, S., Fellah, I., Jaoua, M., Leblond, J., Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Probl. 20 (2004), 47-59. (2004) Zbl1055.35135MR2044605
  8. Chaabane, S., Jaoua, M., Leblond, J., 10.1515/156939403322004928, J. Inverse Ill-Posed Probl. 11 (2003), 33-57. (2003) Zbl1028.35163MR1972169DOI10.1515/156939403322004928
  9. Chaabane, S., Ferchichi, J., Kunisch, K., Differentiability properties of the L 1 -tracking functional and application to the Robin inverse problem, Inverse Probl. 20 (2004), 1083-1097. (2004) MR2087981
  10. Chalendar, I., Partington, J. R., Approximation problems and representations of Hardy spaces in circular domains, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247
  11. Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains G , representations of H ( G ) , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) MR0643698
  12. Duren, P. L., Theory of H p Spaces, Academic Press New York (1970). (1970) MR0268655
  13. Gaier, D., Pommerenke, C., 10.1307/mmj/1028999660, Mich. Math. J. 14 (1967), 79-82. (1967) Zbl0182.10204MR0204631DOI10.1307/mmj/1028999660
  14. Leblond, J., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
  15. Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
  16. Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
  17. Rudin, W., Analytic functions of class H p , Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) MR0067993
  18. Sarason, D., The H p Spaces of An Annulus, Mem. Am. Math. Soc. 56 (1965), Providence, RI. (1965) MR0188824
  19. Wang, H.-C., 10.1017/S0004972700011515, Bull. Austral. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.