Congruence lattices in varieties with compact intersection property
Filip Krajník; Miroslav Ploščica
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 115-132
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKrajník, Filip, and Ploščica, Miroslav. "Congruence lattices in varieties with compact intersection property." Czechoslovak Mathematical Journal 64.1 (2014): 115-132. <http://eudml.org/doc/261982>.
@article{Krajník2014,
abstract = {We say that a variety $\{\mathcal \{V\}\}$ of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every $A\in \{\mathcal \{V\}\}$ is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in $\{\mathcal \{V\}\}$ and embeddings between them. We believe that the strategy used here can be further developed and used to describe the congruence lattices for any (locally finite) congruence-distributive CIP variety.},
author = {Krajník, Filip, Ploščica, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact congruence; congruence-distributive variety; compact congruences; congruence-distributive varieties; congruence lattices; CIP varieties; subdirectly irreducible algebras},
language = {eng},
number = {1},
pages = {115-132},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruence lattices in varieties with compact intersection property},
url = {http://eudml.org/doc/261982},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Krajník, Filip
AU - Ploščica, Miroslav
TI - Congruence lattices in varieties with compact intersection property
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 115
EP - 132
AB - We say that a variety ${\mathcal {V}}$ of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every $A\in {\mathcal {V}}$ is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in ${\mathcal {V}}$ and embeddings between them. We believe that the strategy used here can be further developed and used to describe the congruence lattices for any (locally finite) congruence-distributive CIP variety.
LA - eng
KW - compact congruence; congruence-distributive variety; compact congruences; congruence-distributive varieties; congruence lattices; CIP varieties; subdirectly irreducible algebras
UR - http://eudml.org/doc/261982
ER -
References
top- Agliano, P., Baker, K. A., 10.1017/S1446788700000896, J. Aust. Math. Soc., Ser. A 67 (1999), 104-121. (1999) Zbl0951.08003MR1699158DOI10.1017/S1446788700000896
- Baker, K. A., 10.1090/S0002-9947-1974-0349532-4, Trans. Am. Math. Soc. 190 (1974), 125-150. (1974) Zbl0291.08001MR0349532DOI10.1090/S0002-9947-1974-0349532-4
- Blok, W. J., Pigozzi, D., 10.1007/BF02483723, Algebra Univers. 15 (1982), 195-227. (1982) Zbl0512.08002MR0686803DOI10.1007/BF02483723
- Gillibert, P., Ploščica, M., 10.1142/S0218196712500531, Int. J. Algebra Comput. 22 1250053, 14 pages (2012). (2012) Zbl1261.06013MR2974107DOI10.1142/S0218196712500531
- Grätzer, G., General Lattice Theory, (With appendices with B. A. Davey, R. Freese, B. Ganter, et al.) Paperback reprint of the 1998 2nd edition Birkhäuser, Basel (2003). (2003) Zbl1152.06300MR1670580
- Katriňák, T., 10.2307/2038636, Proc. Am. Math. Soc. 40 (1973), 75-78. (1973) Zbl0258.06006MR0316335DOI10.2307/2038636
- Katriňák, T., Mitschke, A., 10.1007/BF01419572, Math. Ann. 199 (1972), 13-30 German. (1972) Zbl0253.06009MR0319838DOI10.1007/BF01419572
- Lee, K. B., 10.4153/CJM-1970-101-4, Can. J. Math. 22 (1970), 881-891. (1970) Zbl0244.06009MR0265240DOI10.4153/CJM-1970-101-4
- Ploščica, M., Separation in distributive congruence lattices, Algebra Univers. 49 (2003), 1-12. (2003) Zbl1090.08003MR1978609
- Ploščica, M., Finite congruence lattices in congruence distributive varieties, I. Chajda, et al. Proceedings of the 64th workshop on general algebra “64. Arbeitstagung Allgemeine Algebra”, Olomouc, Czech Republic, May 30–June 2, 2002 and of the 65th workshop on general algebra “65. Arbeitstagung Allgemeine Algebra”, Potsdam, Germany, March 21-23, 2003 Verlag Johannes Heyn, Klagenfurt. Contrib. Gen. Algebra 119-125 (2004). (2004) Zbl1047.08005MR2059570
- Ploščica, M., 10.1007/s00012-005-1949-6, Algebra Univers. 54 (2005), 323-335. (2005) Zbl1086.06003MR2219414DOI10.1007/s00012-005-1949-6
- Ploščica, M., Tůma, J., Wehrung, F., 10.4064/cm-76-2-269-278, Colloq. Math. 76 (1998), 269-278. (1998) Zbl0904.06005MR1618712DOI10.4064/cm-76-2-269-278
- Růžička, P., 10.1007/BF02771525, Isr. J. Math. 142 (2004), 1-28. (2004) Zbl1057.06004MR2085708DOI10.1007/BF02771525
- Schmidt, E. T., The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice, Acta Sci. Math. (Szeged) 43 (1981), 153-168. (1981) Zbl0463.06007MR0621367
- Wehrung, F., 10.1090/S0002-9939-99-04558-X, Proc. Am. Math. Soc. 127 (1999), 363-370. (1999) Zbl0902.06006MR1468207DOI10.1090/S0002-9939-99-04558-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.