Congruence lattices of free lattices in non-distributive varieties

Miroslav Ploščica; Jiří Tůma; Friedrich Wehrung

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 2, page 269-278
  • ISSN: 0010-1354

How to cite

top

Ploščica, Miroslav, Tůma, Jiří, and Wehrung, Friedrich. "Congruence lattices of free lattices in non-distributive varieties." Colloquium Mathematicae 76.2 (1998): 269-278. <http://eudml.org/doc/210565>.

@article{Ploščica1998,
author = {Ploščica, Miroslav, Tůma, Jiří, Wehrung, Friedrich},
journal = {Colloquium Mathematicae},
keywords = {diamond; congruence splitting lattice; Kuratowski's Theorem; Uniform Refinement Property; congruence lattice; pentagon; uniform refinement property; Kuratowski's theorem; nondistributive variety of lattices; free lattice; von Neumann regular ring},
language = {eng},
number = {2},
pages = {269-278},
title = {Congruence lattices of free lattices in non-distributive varieties},
url = {http://eudml.org/doc/210565},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Ploščica, Miroslav
AU - Tůma, Jiří
AU - Wehrung, Friedrich
TI - Congruence lattices of free lattices in non-distributive varieties
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 2
SP - 269
EP - 278
LA - eng
KW - diamond; congruence splitting lattice; Kuratowski's Theorem; Uniform Refinement Property; congruence lattice; pentagon; uniform refinement property; Kuratowski's theorem; nondistributive variety of lattices; free lattice; von Neumann regular ring
UR - http://eudml.org/doc/210565
ER -

References

top
  1. [1] G. M. Bergman, Von Neumann regular rings with tailor-made ideal lattices, unpublished notes, October 1986. 
  2. [2] G. Grätzer, General Lattice Theory, Pure and Appl. Math. 75, Academic Press, New York; Lehrbücher Monograph. Gebiete Exakt. Wiss. Math. Reihe 52, Birkhäuser, Basel, 1978. 
  3. [3] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185. Zbl0101.02103
  4. [4] G. Grätzer and E. T. Schmidt, Congruence-preserving extensions of finite lattices to sectionally complemented lattices, Proc. Amer. Math. Soc., to appear. Zbl0923.06003
  5. [5] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. Zbl0044.27302
  6. [6] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. Zbl0155.35102
  7. [7] M. Tischendorf, On the representation of distributive semilattices, Algebra Universalis 31 (1994), 446-455. Zbl0794.06003
  8. [8] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math., to appear. 
  9. [9] F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc., to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.