Congruence lattices of free lattices in non-distributive varieties
Miroslav Ploščica; Jiří Tůma; Friedrich Wehrung
Colloquium Mathematicae (1998)
- Volume: 76, Issue: 2, page 269-278
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [1] G. M. Bergman, Von Neumann regular rings with tailor-made ideal lattices, unpublished notes, October 1986.
- [2] G. Grätzer, General Lattice Theory, Pure and Appl. Math. 75, Academic Press, New York; Lehrbücher Monograph. Gebiete Exakt. Wiss. Math. Reihe 52, Birkhäuser, Basel, 1978.
- [3] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185. Zbl0101.02103
- [4] G. Grätzer and E. T. Schmidt, Congruence-preserving extensions of finite lattices to sectionally complemented lattices, Proc. Amer. Math. Soc., to appear. Zbl0923.06003
- [5] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. Zbl0044.27302
- [6] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. Zbl0155.35102
- [7] M. Tischendorf, On the representation of distributive semilattices, Algebra Universalis 31 (1994), 446-455. Zbl0794.06003
- [8] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math., to appear.
- [9] F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc., to appear.